MODIS Atmosphere L3 Gridded Product Algorithm Theoretical Basis Document (ATBD) & Users Guide

PAUL HUBANKS¹, STEVEN PLATNICK², MICHAEL KING^{,3} AND BILL RIDGWAY⁴

MODIS Algorithm Theoretical Basis Document No. ATBD-MOD-30 for Level-3 Global Gridded Atmosphere Products (08_D3, 08_E3, 08_M3) and Users Guide

(Collection 6.1, Version 4.5, 6 August 2020)

Adnet Systems, Lanham, MD
 Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, MD
 Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO
 SSAI Corp, Greenbelt, MD

TABLE OF CONTENTS

1.0. Introduction	1
1.1. Approach	3
1.1.1. Time span	4
1.1.2. Definition of Day change between C5 and C6 5	
2.0. Gridding	7
2.1. Computation of geolocation in L2 atmosphere products 14	1
2.1.1. Dropped pixels in L2 products	.16
2.2. Sampling	.16
2.2.1. Sampling modification to avoid dead detectors	.17
3.0. Computation of L3 Daily Statistics	.19
3.1. Aggregation and QA weighting of statistics	.19
3.1.1. Aggregation of statistics based on physical properties	.20
3.1.2. QA weighting of statistics based on confidence	.21
3.2. Types of daily statistics computed	.23
3.2.1. Simple statistics	.23
3.2.2. QA-weighted simple statistics	.24
3.2.3. Fraction statistics	.24
3.2.4. Pixel count statistics	.24
3.2.5. Logarithm statistics	.24
3.2.6. Uncertainty statistics	.25
3.2.7. Logarithm of uncertainty statistics	.26
3.2.8. Histogram	.26
3.2.9. Histogram of confidence	.27
3.2.10.Joint histogram	.27
3.2.11. Joint regression	.28

3.3. Special handling logic in daily statistics
3.3.1. Partial retrieval fix for cloud optical thickness
4.0. Computation of L3 Multiday (8-Day & Monthly) Statistics
4.1. Computational weighting schemes for multiday statistics
4.2. Types of multiday statistics computed
4.2.1. Simple statistics based on the daily mean
4.2.2. Simple statistics based on the daily standard deviation
4.2.3. QA-weighted statistics based on the daily mean
4.2.4. Fraction statistics
4.2.5. Pixel count statistics
4.2.6. Logarithm statistics
4.2.7. Uncertainty statistics
4.2.8. Logarithm of uncertainty statistics
4.2.9. Histogram35
4.2.10.Histogram of confidence
4.2.11.Joint histogram
4.2.12. Joint regression
5.0. Reading and Unpacking HDF File Data
5.1. Descaling the SDS data
5.2. Definitions of local attributes
5.2.1. Local attributes used in all L3 files
5.2.2. Local attributes used in the L3 daily file only41
5.2.3. Local attributes used in the L3 eight day and monthly file only41
6.0. Using the MODIS-Atmosphere Web Site42
7.0. Interpretation of Data: Frequently Asked Questions47
7.1. How do cloud mask & optical properties 'cloud fractions' differ?47
7.1.1. Cloud mask cloud fraction47

7.1.2. Cloud optical properties cloud fraction	47
7.1.3. Post-processing L3 data to retrieve the fraction denominator .	51
7.2. What do the 'undetermined' and 'combined' cloud phases mean?	58
7.3. What is the minimum illumination req. for a MODIS retrieval?	58
7.4. What is the best way to display (marginal) histogram data?	59
7.5. What is the best way to display joint histogram data?	62
7.6. How should the various multilayer cloud fractions be interpreted?	67
7.7. Minimum L2 pixel count req. to compute L3 daily statistics?	68
7.8. L3 Daily Statistics: a single-time snapshot or a daily average?	69
7.9. Cloud fraction data storage differences between L2 and L3	72
7.10.Why do some Joint Histos in daily not propagate to the multiday?.	71
7.11. Why CTP Day parameters extend more poleward than the COP	73
7.12 Brief explanation of the new COP parameters for C6	74
7.13 Brief explanation of the differences between Cloud Phase Infrared	
and Cloud Fraction statistics	74
7.14 Why are some Histograms and Joint Histograms only available in	
the Daily (D3) product; and not the Eight Day (E3) and/or Monthl	y
(M3) product?	77
7.15 Why are L3 pixel counts for Cloud_Fraction_Day (from	
Cloud_Mask) sometimes less than the L3 pixel counts for	
Cloud_Retrieval_Fraction_Combined ?	77
8.0. High Level Changes between C5 and C6: Information and Imagery	80
8.0.1. Definition of Day change between C5/51 & C6	80
8.1. Solar and Sensor Zenith and Azimuth Angles	82
8.2. Aerosol High Level Changes	83
8.2.1. Aerosol Optical Depth Land and Ocean	84
8.2.2. Aerosol Optical Depth Land (only)	85

8.2.3. Aerosol Optical Depth Ocean (only)86
8.2.4. Deep Blue Aerosol Optical Depth Land (only)88
8.2.5. Combined Dark Target + Deep Blue Aerosol Optical Depth89
8.3. Water Vapor NIR (Clear Sky Land and Sunglint Ocean)91
8.4. Cloud Top Temperature Day92
8.5. New Surface Type Parameters93
8.6. Cloud Optical Thickness (Regular vs. PCL Retrieval)96
8.7. Cloud Optical Thickness (Comparison of Retrieval Algorithms)97
8.8. New Defintions of "Low" and "High" in AWV SDS's101
9.0. References
Appendix A: Scientific Data Set (SDS) Inventory for L3 Products105
Appendix B: Histogram Parameters & Bin Boundaries114

Appendix C:	Joint Histogram F	Parameters & B	Sin Bou	ndaries .		118
Appendix D:	Aerosol Derived F	Parameters C5	to C6 N	Mapping '	Table	122

1.0. Introduction

This document describes the theoretical basis of MODIS Atmosphere Level 3 (L3) products. Topics covered include computational approaches and scenarios, subsampling and gridding characteristics and caveats, the impact of Level 2 (L2) confidence flags on L3, and finally a breakdown of the parameters and statistics computed in L3.

The "Level" terminology is used to denote broad categories of MODIS data products: Level 0 (L0) denotes raw spectral channel counts, Level 1B (L1B) denotes calibrated and geolocated radiances, Level 2 (L2) denotes orbital-swath science products, and finally Level 3 (L3) denotes global-gridded science products.

All L3 MODIS Atmosphere products, retrieved from MODIS instrument and ancillary data, are grouped into user-friendly Hierarchical Data Format (HDF) files based upon the platform (Terra or Aqua) and temporal period of collection (Daily (08_D3), Eight Day (08_E3), and Monthly (08_M3)).

Terra data use a MOD prefix in the HDF file name. Aqua data use a MYD prefix. So, for example, a Terra L3 Daily file would have an HDF filename prefix of MOD08_D3 and an Aqua L3 Daily file would have an HDF filename prefix of MYD08_D3.

The Terra overpass time at the equator is around 1030 local solar time in its descending (daytime) mode and 2230 local solar time in its ascending (nighttime) mode. The Aqua overpass time is around 1330 local solar time in ascending (daytime) mode and 0130 local solar time in descending (nighttime) mode.

L3 Atmosphere products contain hundreds of $1^{\circ} \times 1^{\circ}$ global gridded Scientific Data Sets (SDSs) or statistics derived from the L2 products of Aerosol (04_L2), Water Vapor (05_L2), Cloud (06_L2), and Atmospheric Profile (07_L2). L3 SDSs derived from Cloud Mask (35_L2) related data are actually read from (duplicated in) the Cloud (06_L2) product, therefore the L2 Cloud Mask (35_L2) product is never read (directly) into L3.

MODIS atmosphere products are grouped as follows. Earth Science Data Type (ESDT)

names, used to identify each product by their HDF filename, are provided in parentheses.

Level 2 Products

- Aerosol Properties (04_L2)
- Water Vapor (or Precipitable Water) (05_L2)
- Cloud Properties (06_L2)
- Atmospheric Profiles (07 L2)
- Cloud Mask (35_L2)
- Joint Atmosphere (ATML2)

Level 3 Products

- Daily Global (08_D3)
- Eight-day Global (08_E3)
- Monthly Global (08_M3)

Each Level 2 atmospheric parameter is retrieved at a spatial resolution determined by the sensitivity of retrieval, not necessarily on a single field of view (FOV) basis of the MODIS spectral band retrieval needed to perform the retrieval. Resolutions of L2 science products are at $1 \times 1, 5 \times 5$, and 10×10 km. Level 3 atmospheric parameters are computed at $1^{\circ} \times 1^{\circ}$ spatial resolution.

MODIS Level-3 Hierarchical Data Format (HDF) product files have standardized filenames that are detailed below.

> Terra (AM) Platform: MOD08_D3.AYYYYDDD.VVV.YYYYDDDHHMMSS.hdf

> > Aqua (PM) Platform:

MYD08_D3. AYYYYDDD.VVV.YYYYDDDHHMMSS. hdf

Definitions: MOD08_D3 = Earth Science Data Type Name A = Acquisition Date YYYYDDD = Data Year and Day of Year VVV = Collection Version YYYYDDDHHMMSS = Processing Date & Time hdf = Suffix denoting HDF file

Note that: (i) all times are UTC times, not local times, and (ii) the MOD08_D3 prefix represents a daily L3 Terra

platform file. Daily Aqua platform files have the prefix MYD08_D3. Eight day files have the prefix MOD08_E3 and MYD08_E3. Monthly files have the prefix MOD08_M3 and MYD08_M3.

The Collection "version" denotes a complete set of MODIS files that are earmarked by comprehensive changes (updates) to the science algorithms. Collection 5 was completed in calendar year 2006. Collection 6 is expected to begin in early 2009. Details on the changes implemented in each Collection are available in the "products" section of the MODIS-Atmosphere web site (modis-atmos.gsfc.nasa.gov). Occasionally significant updates are implemented in the middle of a Collection. This is only done when a L2 or L3 operational algorithm software bug is discovered that seriously impacts one or more of the Scientific Data Sets (SDSs) contained within a L2 or L3 HDF file. Scientists working with MODIS data should always be aware of updates applied to the operational software (especially those applied in the middle of a collection) by visiting the 'PGE History' page in the "products" section of the MODIS-Atmosphere web site (see link above).

1.1. Approach

The Collection 5 L3 MODIS Atmosphere Daily Global Product contains nearly 700 statistical Scientific Data Sets (SDSs) that are derived from 106 scientific parameters read from four Level-2 MODIS Atmosphere Products: Aerosol, Water Vapor, Cloud, and Atmosphere Profile.

The Collection 5 L3 MODIS Atmosphere Eight-Day and Monthly Global Products contain over 900 statistical Scientific Data Sets (SDSs) that are derived from statistics within the Daily L3 Global product only.

All statistics are sorted into $1^{\circ} \times 1^{\circ}$ cells on an equal-angle global grid (see section 2.0). A number of statistical summaries are computed for each of these L3 products, depending on the parameter being considered. Statistics for a given measurement might include:

- Simple (mean, minimum, maximum, standard deviation) statistics
- Parameters of normal and log-normal distributions
- Fraction of pixels that satisfy some condition (e.g., cloudy, clear)
- Histograms of the quantity within each grid box

- Histograms of the confidence placed in each measurement
- Joint Histograms and/or regressions derived from comparing one science parameter to another, statistics may be computed for a subset that satisfies some condition.

1.1.1. Time span

L2 MODIS data granules (input to L3 Daily) are always time-stamped using Coordinated Universal Time. Coordinated Universal Time is International Atomic Time (TAI) with leap seconds added at irregular intervals to compensate for the Earth's slowing rotation. These added leap seconds allow Coordinated Universal Time to track the mean solar time at the Royal Observatory, Greenwich (GMT).

Coordinated Universal Time is abbreviated UTC. The International Telecommunication Union wanted Coordinated Universal Time to have a single abbreviation for all languages. English speakers and French speakers each wanted the initials of their respective languages' terms to be used internationally: "CUT" for "coordinated universal time" and "TUC" for *"temps universel coordonné.*" This resulted in the final compromise of using "UTC."

Each L2 MODIS granule (stored in a single HDF file) contains 5 minutes of data. The time stamp (which is part of the HDF file name) shows the start of the 5-minute data collection period. For example, a L2 MODIS granule (contained within a single HDF file) might have a time stamp of 1430. This means the start time of data acquisition was 14:30:00 UTC. The subsequent HDF granule would have a time stamp of 1435, which corresponds to an acquisition start time of 14:35:00 UTC.

In Collection 051 and earlier, the Daily L3 product contained statistics computed from a set of L2 MODIS granules (HDF files) that spanned a 24-hour (00:00:00 to 23:59:59 UTC) interval. In the case where a L2 parameter is only computed during the daytime, then only day-time files are read to compute the L3 statistics.

In Collection 006 and later, Daily L3 product contained statistics with tweaked time stamps (as much as 3 hours before the start of or 3 hours after the end of a GMT day) such that data gaps and or data overlap near the (time and/or geographic) boundary are mitigated. So in Collection 6 data, one will rarely see data gaps near the International Date Line or data observed nearly 24 hours apart being mixed together. This provides a cleaner and clearer day to day boundary in the stored HDF Daily data.

The Eight-Day L3 product is computed from 8 consecutive Daily L3 product files. The start date for the 8-day interval is always reset to January 1st at the beginning of each calendar year, however the last 8-day interval in each year is allowed to span over the first few days of January. For example, the last eight-day interval for 2005 runs from 12/27/05 to 1/3/06, while the first eight-day interval for 2006 runs from 1/1/06 to 1/8/06. Users should note these days of overlap when evaluating a set of 8-day product files that span several years.

The Monthly L3 product is computed from the complete set of daily files that span a particular month. There are never any days of overlap (like that which exists in the eight-day product).

1.1.2. Definition of Day change between Collection 5/51 and Collection 6

The use of the hardwired 24-hour (00:00:00 to 23:59:59) UTC time stamp interval to determine a "data day" in Collection 051 and earlier caused 2 troublesome problems. First there was an every other day repeating pattern seen in the L3 Daily (08_D3) data/images. This pattern showed an apparent "data gap" on one day, where there appeared to be missing granules or sometimes a missing orbit near the International Date Line. Then on the subsequent day there was "data overlap", where the "missing" granules from the previous day were mixed in with the granules from the new day – effectively combining data observed nearly 24 hours apart to be averaged together. This can be seen in Figure 1 below. Figure 2 shows the same two days of data, except using Collection 6 data, which had the new C6 "Definition of Day" update applied – effectively repairing (eliminating) the problem.

Figure 1. Two consecutive days of Collection 51 MODIS data showing the orbital gap, then orbital overlap problem. This pattern repeats every 2 days – and was caused by using a fixed 0000-2400 UTC definition of "Day".

Figure 2. The same two consecutive days of data shown in Figure 1 except this time depicting Collection 6 (C6) MODIS data, showing the data gap and overlap problem (that was found in C5/C51 and earlier Collections) repaired by the new C6 "Definition of Day" update.

2.0. Gridding

All MODIS Atmosphere L3 SDSs are stored on an equal-angle latitude-longitude grid (cf. Figure 3).

Figure 3. A latitude-longitude rectangular grid.

The grid cells are $1^{\circ} \times 1^{\circ}$, which means the MODIS Atmosphere L3 output grid is always 360 pixels in width and 180 pixels in height. An example of a MODIS Atmosphere L3 Scientific Data Set (SDS) mapped on a $1^{\circ} \times 1^{\circ}$ latitude-longitude grid is shown in Figure 4.

The L3 grid cell indexed (1,1) in the SDS is located at the upper left corner of the map and corresponds to a grid box with boundaries of 89° to 90°N latitude and 179° to 180°W longitude.

Figure 4. An example L3 SDS shown in its native latitude-longitude projection format.

The assignment of L2 pixels (to a L3 grid cell) that fall exactly on a L3 grid boundary is performed using the following convention: L2 pixels that fall exactly on the first whole degree boundary 90°N (+90.0) latitude and 180°W (-180.0) longitude are binned in the L3 grid column and row #1. L2 pixels that fall exactly on the second whole degree boundary 89°N (+89.0) and 179°W (-179.0) are binned in L3 grid column and row #2. The exception to this logic occurs in the last L3 grid row (89°S to 90°S), which contains both whole degree latitude boundary pixels (-89.0 as well as -90.0). There is no exception for the last L3 grid column (179°E to 180°E) since +180.0 and -180.0 represent the same physical location (these L2 pixels are binned in the first L3 grid column).

An important property to note when considering L3 gridding occurs due to distortion in the latitude-longitude map projection as one moves poleward. The actual (real world) size of each $1^{\circ} \times 1^{\circ}$ grid box physically shrinks when moving from the equator toward the pole due to the convergence of longitude lines on the globe (see Figure 5). At the equator each $1^{\circ} \times 1^{\circ}$ grid cell is roughly 12,321 km² in size, at the pole each $1^{\circ} \times 1^{\circ}$ grid cell is only 107 km² or less than $1/100^{\text{th}}$ the size.

Figure 5. Convergence of longitude lines produces shrinking of 1° × 1° grid cells toward the poles.

It should be noted that there is also a variation of pixel size in L2 (input) products due to viewing (scan angle) distortion. For example, in 1 km (nadir) resolution L2 data, the L2 pixels expand due to view angle distortion when moving from nadir towards the limb (high scan angles) of the MODIS scan (see Figures 6 and 7). These same distortion factors apply to 5 and 10 km native resolution L2 pixels.

Figure 6. L2 pixel overlap due to scan width growth as a function of scan angle.

Figure 7. Growth of a 1-km resolution L2 pixel as a function of scan angle.

This viewing distortion of L2 input pixels means that there are fewer L2 pixels to average in the computation of L3 daily statistics for L3 $1^{\circ} \times 1^{\circ}$ grid boxes that cover regions of high scan angles in the L2 orbital products than for those that cover L2 orbital products computed closer to nadir view. For multiday products, this effect is averaged out. It should be noted that this "growth" of the L2 pixel also causes some pixel (scene) overlap at high scan angles – meaning that the L2 pixels used to compute L3 daily statistics in these "orbit edge" regions are not as statistically independent as those computed with near nadir view pixels. So not only are there fewer L2 pixels to average at high MODIS scan angles, but they are less independent. A third impact is these high scan angle L2 pixels may be less reliable in general as they are viewed by the sensor through more atmosphere, which complicates the retrieval process. A fourth impact is that they could have more inherent geolocation error depending on the local terrain.

Figure 8 shows the predicted orbital track (white lines) for the MODIS Terra instrument for a given day in 2007. L3 gridding issues at the poles (due to very small (area-wise) L3 grid boxes) are exacerbated by MODIS orbital tracks that go no further north or south than roughly 82° – which means the pixels at the poles are always viewed at higher scan angles. Also there are 16 overlapping orbits near 82° latitude (each one roughly 98 minutes apart) that cause "time averaging" to occur for daily statistics computed poleward of about 77° (that is, they tend to be daily <u>average</u> statistics), in contrast to those at mid-latitudes (that typically can be pinned down to within 20 minutes of a MODIS instrument overpass).

Figure 8. Predicted Terra MODIS orbit tracks for a particular day (March 17, 2007).

In order to help visualize a typical distribution of L2 pixel counts that are used to compute L3 daily statistics, a typical daily pixel count image is shown in Figure 9. This figure shows the number of L2 pixels that typically go into the computation of statistics in each L3 $1^{\circ} \times 1^{\circ}$ grid cell for all (daytime only) aerosol-related (10 km resolution at L2) SDSs.

Figure 9. Typical global distribution of daily pixel counts (i.e., the number of L2 data pixels per 1° × 1° L3 grid cell) for 10-km resolution L2 input products (e.g., aerosol derived products). Note this is a daytime (ascending node) only product.

For 5 km (native or sampled) L2 products, the distribution would be similar; however the counts would be roughly 4 times higher. Missing data that include orbital gap regions and the solar zenith angle cut-off region toward high southern latitudes (since this is a daytime only product) is shown by the pure black color.

It is clear from Figure 8 that over 120 L2 pixels were used to compute L3 statistics for this SDS near nadir (the bright red color at mid latitudes) but fewer than 15 L2 pixels were used near the edge of the scan (the light violet color next to the black orbital gap regions at midlatitudes). Pixel counts for 10 km input products generally range from 0 to 121 (11 × 11), and pixel counts for 5 km input products generally range from 0 to 484 (22 × 22) pixels. Onedegree L3 grid cell "pixel counts" can exceed these expected maximum numbers where overlapping orbits and near nadir views intersect (typically around 82° latitude). The reduction of counts in the top few rows of latitudes (82° to 90°N) in Figure 8 is due to the reduction of L2 pixel counts due to high view angles (that make the L2 pixels larger) and therefore fewer fall into a given (shrinking, due to Earth geometry) polar L3 grid cell since one L2 pixel can only be assigned to one L3 grid cell.

So for the first and last few latitude bins (88° to 90° latitude), one has the dual drawback of

(i) very small (area-wise) L3 grid cells containing small populations of relatively large input L2 pixels that overlap spatially (due to view-angle distortion) in a single orbital pass, and (ii) multiple orbital passes (up to 16 on a given day) that take measurements of the region, which causes the L3 Daily data to be more representative of a daily average instead of a single overpass snapshot.

One final property of L3 gridding users should be aware of is, in order to simplify the L3 operational production software, each L2 grid cell is "located" or placed in the L3 grid cell where its center latitude/longitude falls within the L3 grid cell. In cases where a larger (view-angle distorted) L2 pixel actually covers (or intersects) more than one $1^{\circ} \times 1^{\circ}$ L3 grid cell, (a situation that typically occurs at high L2 scan angles located over higher latitudes), the L2 pixel is still only assigned (placed) in the single L3 grid cell where the geolocated center point of the L2 pixel is located. Although this shortcoming is relatively minor in the operational L3 software due to the relatively large $1^{\circ} \times 1^{\circ}$ L3 grid size and the much smaller L2 pixel size (5 or 10 km at nadir view), when the code is used in research mode to produce products at higher resolution (0.1° × 0.1° for example), it can produce unwanted effects where unnatural "gaps" are introduced between adjacent L2 pixels, as illustrated in Figure 10.

Finally it should be noted that most of these pixel count variation issues are mitigated in the multiday (eight-day and monthly) products since the orbital gap positions shift from day to day, which allows data from subsequent days to fill in the previous day's gaps. This will tend to provide complete global coverage over longer time periods (8 days or so).

Figure 10. A section of a L3 cloud top temperature image produced for L3 research purposes at $0.1^{\circ} \times 0.1^{\circ}$ resolution clearly showing the pixel binning limitation in the operational L3 code for grids finer than 1° (the grid currently implemented in operations).

2.1. Computation of geolocation in L2 atmosphere products

MODIS Atmosphere Level 2 (L2) HDF files always have geolocation arrays stored at either 5-km or 10-km resolution. The Aerosol (04_L2) product contains 10-km resolution geolocation and 10-km retrieval data. All other Atmosphere products used as input into L3 (Water Vapor (05_L2), Cloud (06_L2), Profiles (07_L2)) contain 5-km resolution geolocation and either 1-km or 5-km retrieval data.

Retrieval data for 10-km resolution L2 products like aerosol properties are generated from

 10×10 1-km L1B input pixels. The geolocation for these 10×10 km resolution products is **computed** by averaging the geolocation for the four central (column, row) pairs: (5,5), (5,6), (6,5), (6,6), as shown in Figure 11.

Figure 11. A depiction of what 1 km pixels (orange) are used to compute 10-km resolution L2 geolocation. Geolocation is computed from the 4 central 1-km grid boxes.

Retrieval data for 5-km resolution L2 data products is generated from 5×5 1-km L1B input pixels. Retrieval data for 1-km resolution L2 data products is computed at the native 1 km L1B input pixel resolution. For L2 HDF files containing both of these cases, the geolocation is stored at 5-km resolution. The 5×5 km geolocation is **copied** from center (column, row) pair: (3,3), as shown in Figure 12.

Figure 12. A depiction of what 1 km pixels (orange) are used for 5-km resolution L2 geolocation. Geolocation is copied from the center of the 1-km grid.

Note that the 2×2 5-km grid area (the outer boundary in Figure 12) matches the 10 km grid area (the outer boundary in Figure 11) exactly.

2.1.1. Dropped pixels in L2 products

One additional characteristic should be noted here. A MODIS scan is 1354 1-km pixels in width. For 5 and 10 km resolution L2 products, the last 4 pixels in each MODIS scan are effectively dropped when performing retrievals (a pre-launch decision made by the L2 development teams). For example, for 5 km cloud top property parameters, no retrieval is made for the last 4 (hanging) pixels in each scan line. This also impacts the geolocation (latitude and longitude) arrays where there is not geolocation computed or stored for the last 4 pixels. To make this clearer, even though there are 1354 1-km pixels in a scanline, there are only 270 5-km cross-scan geolocation grid points and data retrievals in 5-km L2 products (and 135 geolocation grid points and data retrievals in 5-km L2 products (and 10-km L2 products (and L3 products derived from those L2 products), a very tiny amount of potential data at the far edge of each MODIS swath is not used, however due to the 1° × 1° averaging in L3, this is more of an issue in 5-km and 10-km L2 products than in 1° × 1° L3.

2.2. Sampling

Sampling of L2 input data for computation of L3 statistics is always performed whenever the input L2 pixel resolution is at a different (finer) resolution than the stored geolocation within the L2 input product file. This occurs in all parameters noted by the red boxes in the Table 1.

So for cases where L2 data are at 1-km resolution and geolocation is stored at 5-km, the L3 software samples the 1-km L2 data every 3rd column and every 3rd row. This ensures the L2 data pixel matches exactly the stored geolocation. (Refer back to Figure 11 and note the orange-colored 1 km pixel.) Note that starting in collection 5, this sampling convention was changed (see section 2.2.1 for details).

Derived from Product Family	L2 Data Resolution	L2 Geolocation Resolution	L2 Input Pixel Sampling (Maximum) per 1° L3 Grid Box (Equator)	Impact
Aerosol 04	10 km	10 km	121 out of 121	No
Water Vapor 05	1 km	5 km	484 out of 12,231	Yes
Cirrus Detection 06_CD	1 km	5 km	484 out of 12,231	Yes
Cloud Top Properties 06_CT	5 km	5 km	484 out of 484	No
Cloud Optical Properties 06_OD	1 km	5 km	484 out of 12,321	Yes
Atmosphere Profile 07	5 km	5 km	484 out of 484	No

 Table 1.
 L2 parameters that are impacted by sampling (note that counts are approximated for nadir view at the Equator).

There were three reasons why sampling was done in the L3 production: (i) it removed the need to compute geolocation for all (input) 1-km L2 pixels, greatly simplifying the L3 operational software, (ii) fewer L2 pixels needed to be read and operated on, reducing the operational run and CPU time, and (iii) it was found that sampling causes minimal impact of computed statistics at the operational L3 grid resolution of $1^{\circ} \times 1^{\circ}$.

2.2.1. Sampling modification to avoid dead detectors

A software modification was introduced in Collection 5 (the latest MODIS Atmosphere data version available as of calendar year 2008), which offset slightly the L2 data point sampled. This patch **only** impacts L3 data that are derived from **sampled** L2 data and includes Water Vapor (05_L2), Cirrus Detection and Cloud Optical Property (06_L2) parameters (see Table 1), all of which are computed and stored at 1 km resolution in the L2 files but are sampled at 5 km resolution for computation of L3 gridded statistics.

In these cases, the geolocation matches the 1-km area corresponding to the orange square in Figure 13. This corresponds to the 1-km pixel located in column 3, row 3. However, the actual L2 data are sampled from the blue square (1 km pixel located in column 3, row 4). In other words, L2 data from MODIS detectors 4 and 9 are sampled (instead of detectors 3 and 8) in the 10-detector set. This patch was necessary because in some critical MODIS spectral bands on the

Aqua platform, detectors 3 and 8 both died (that is, always contained missing data); so a shift to adjacent detectors was necessary to prevent many subsampled products from being completely missing (fill values) in L3.

Figure 13. A shift in the L2 "sampling pixel" for 5 km L2 input products was implemented to prevent dead detectors from causing missing L3 data in Collection 5 (Orange = Collection 4 sampling at the center of the 5 × 5 (column 3, row 3), Blue = Collection 5 Sampling at (column 3, row 4) slightly off center of the 5 × 5 grid box. In other words, in Collection 4, L2 pixels from detectors 3 & 8 were sampled; in Collection 5, L2 pixels from detectors 4 & 9 were sampled.

The choice of which alternate pair of detectors to pick [(1 & 6), (2 & 7), (4 & 9), or (5 & 10)] was made to both minimize errors in geolocation as well as inherent detector errors. It turned out that detectors 4 and 9 had the dual benefit of: (i) being immediately adjacent to the geolocation pixel so only a 1 km geolocation error was introduced, and (ii) both detectors 4 and 9 were well behaved and had small residual errors when compared to averages taken over the entire 5×5 km area (Oreopoulos 2005).

Even though the change in start detector (from the 3rd to the 4th) was prompted by the

failure of Aqua MODIS detectors 3 and 8 in band 6 (1.64 μ m), the change was extended to Terra data as well after a study showed that Terra detector pairs 4 and 9 provided the most representative results over a 5 km grid cell (Oreopoulos 2005) and it was thought that matching the logic between Terra and Aqua versions of the L3 software was prudent.

3.0. Computation of L3 Daily Statistics

The quality of a Level 2 product can be (i) inherited from the L1B radiances, or (ii) associated with the retrieval process. The pixel-based L1B validity flags comprising information on dead and saturated detectors, calibration failure, etc., are examined by L2 algorithms for determination of the radiometric status of each pixel. This information can prevent further calculations from being performed if the "valid L1B input data" criteria are not met by the given algorithm. The granule-level (L1B) QA metadata provide summary information for valid and saturated Earth view observations, and can be useful in screening a granule of data. Details about MODIS L1B found MCST web QA flags be the can on site (www.mcst.ssai.biz/L1B/L1B_docs). The structure and information content of MODIS Atmosphere L2 runtime QA are detailed in the QA Plan available on the MODIS Atmosphere web site (modis-atmos.gsfc.nasa.gov/reference_atbd.php).

It should be noted that runtime QA flags are only found in Level 2 (L2) Atmosphere products. Level 3 (L3) Atmosphere products contain no runtime QA flags; however L2 runtime QA flags are used in L3 to compute (aggregate and QA weight) statistics in L3.

3.1. Aggregation and QA weighting of statistics

All L3 products (Daily, Eight-Day, and Monthly) make use of Aggregation and QA weighting capabilities. Aggregation and QA weighting information is read in from and based upon L2 (input) QA bit flag SDSs.

It should also be noted that L3 statistics can be both aggregated and QA weighted; however only a single aggregation and/or QA weighting can be performed for any given output L3 SDS (a limitation in the L3 operational software).

3.1.1. Aggregation of statistics based on physical properties

For some parameters, it is useful to aggregate results into L3 SDSs based on a physical characteristic of the parameter or of the scene. Aggregation refers to the ability to separate L2 input pixel information into various scientifically relevant categories such as liquid water clouds only, ice clouds only, daytime only, nighttime only, clear sky only, dusty scene only, smoky scene only, etc. This aggregation utilizes L2 "Runtime QA Flags" that are designed to convey information on retrieval processing path, input data source, scene characteristics, and the estimated quality of the physical parameters retrieved. In addition, this broad group of flags also includes Cloud Mask flags (initially derived at 1 × 1 km resolution) that may be recomputed at the spatial resolution of the L2 retrieval for the determination such scene characteristics are noted by a suffix to the SDS name (_Liquid, _Dust, etc.). Additional detail and documentation are always provided in the local attribute "long_name" attached to each L3 SDS within the HDF file. Table 2 lists the various L2 products that have this aggregation information available for use in L3.

Table 2. L2 parameters that are aggregated in level-3.

Product Family	Aggregation Property	Aggregation Used ?
Aerosol 04_L2	Dust, Smoke, Sulfate	Yes
Water Vapor 05_L2	Clear, Cloudy	Yes
Cirrus Detection 06_L2 (CD)	n/a	No
Cloud Top Properties 06_L2 (CT)	Day, Night	Yes
Cloud Optical	Liquid Water, Ice, Undetermined, Combined	Yes

Properties 06_L2 (OD)	Phase Clouds Single Layer (1L), Multi Layer (ML) Clouds	
Atmosphere Profile 07_L2	n/a	No

3.1.2. QA weighting of statistics based on confidence

QA weighting refers to the ability to weight more heavily what are expected to be more reliable L2 input pixels in the computation of L3 statistics. There are four levels of "reliability" or "confidence" set by the L2 QA Confidence Flags. These four levels are: No Confidence or Fill (QA = 0), Marginal Confidence (QA = 1), Good Confidence (QA = 2), or Very Good Confidence (QA = 3). QA weighted statistics always have the identifying string "QA" somewhere in the Scientific Data Set (SDS) name (for example: "QA_Mean"). Additional detail on the flags used to perform the QA weighting can be found in the local attributes that begin with the string "QA."

Only six of the derived L3 Daily statistics have the ability to be QA weighted: Mean, StandardDeviation, LogMean, LogStandardDeviation, MeanUncertainty, and LogMeanUncertainty. A seventh related statistic, the Confidence Histogram, does not actually "weight" the statistics by confidence, but does compute (sum) the counts of the various confidence categories so the relative populations of QA confidence categories can be analyzed.

QA Weighted Statistics are computed by weighting all L2 pixels by their QA confidence flag value given in Table 3, using the equation below:

L3 QA Weighted Statistic =
$$\sum d_i w_i / \sum w_i$$
, (1)

where,

L2 data value = d_i ,

L2 QA value = w_i (weight = 0, 1, 2, 3)

Table 3. The weighting given in L3 QA-weighted statistical computations to various L2 QA Confidence

categories.

L2 Confidence QA Value	Weighting in L3 QA-Weighted Statistics
L2 pixels with QA = 3 (very good confidence)	are given a 3x weighting
L2 pixels with QA = 2 (good confidence)	are given a 2x weighting
L2 pixels with QA = 1 (marginal confidence)	are given a 1x weighting
L2 pixels with QA = 0 (no confidence)	are given a 0x weighting (i.e., they're excluded)

So while all *non-fill* QA = 0 pixels are included in regular statistics; they are screened (removed) from QA weighted statistics. For example: if a L3 1° grid cell had three L2 pixels to average, and one L2 pixel had a QA Confidence value of 3, one had a value of 1, and one had a value of 0; then L2 pixel with QA = 3 will have three times more weighting when computing the L3 gridded mean than the QA = 1 pixel, and the QA = 0 pixel would not be used at all in the QA weighted mean (it would however still be used in the regular mean, where no QA weights are applied). This technique allows for the creation of L3 (QA-weighted) statistics that can selectively exclude *no confidence* (or experimental) L2 results.

Confidence Histograms are computed by totaling the pixel counts (note these may be subsampled, see Table 1) in each L3 1° grid cell of a L2 parameter that fell in one of the four confidence categories described above.

Finally note that for regular (non QA-weighted) statistics, all L2 pixels are given <u>equal</u> <u>weight</u> in the L3 statistical computation; and QA = 0 (no confidence) non-fill L2 input pixels are <u>included</u> in the computation of statistics.

3.2. Types of daily statistics computed

A total of 14 different general types of statistics are computed in the daily product. These general statistical categories are Simple Statistics, QA-weighted Statistics, Fraction Statistics, Log Statistics, Uncertainty Statistics, Regression Statistics, Pixel Counts, Confidence Histograms, Marginal Histograms, and Joint Histograms.

Statistics in the Daily file are always based on the set of L2 input pixels read from the four L2 input product files: Aerosol, Water Vapor, Cloud, and Atmospheric Profile.

Users should note that, in addition to regular simple statistics, L2 QA Confidence flags are also ignored in the L3 computation of pixel count, histogram, joint histogram, and regression statistics.

3.2.1. Simple statistics

- Mean. Statistics always have the Scientific Data Set (SDS) name suffix "_Mean" and are computed by taking an unweighted average of L2 pixels (sometimes sampled, see Table 1) within a given 1° L3 grid cell.
- Standard Deviation. Statistics always have the Scientific Data Set (SDS) name suffix "_Standard_Deviation" and are computed by calculating an unweighted standard deviation of all L2 pixels (sometimes sampled, see Table 1) within a given 1° L3 grid cell.
- Minimum. Statistics always have the Scientific Data Set (SDS) name suffix "_Minimum" and are computed by finding the minimum value of L2 pixels (sometimes sampled, see Table 1) within a given 1° L3 grid cell.
- Maximum. Statistics always have the Scientific Data Set (SDS) name suffix "_Maximum" and are computed by finding the maximum value of L2 pixels (sometimes sampled, see Table 1) within a given 1° L3 grid cell.

3.2.2. QA-weighted simple statistics

- QA_Mean. Level 2 Confidence QA Flags that indicate the quality of each L2 pixel are used to weight the pixels when computing the L3 mean (see Section 3.1.2 for details on QA-weighting).
- QA_Standard_Deviation. Level 2 Confidence QA Flags that indicate the quality of each L2 pixel are used to weight the pixels when computing the L3 standard deviation (see Section 3.1.2 for details on QA-weighting).

3.2.3. Fraction statistics. These statistics are only used for computing cloud fraction.

• Fraction. Estimates of cloud fraction based on L2 pixel data. Some fractions are

computed from QA Flags that describe the cloudiness of the scene and some directly from the L2 Cloud Fraction SDS data.

3.2.4. Pixel count statistics. These statistics are only computed for some parameters. It is similar to a histogram computation except that instead of multiple bins there is only a single bin that covers the full range of all *non-fill* L2 data that are read in for each L3 $1^{\circ} \times 1^{\circ}$ grid cell.

• Pixel Count. The count of all non-fill L2 pixel data that are read in and used to compute statistics at L3.

3.2.5. Logarithm statistics. These statistics are only computed for cloud optical thickness (τ_c) parameters. Because of the curvature of cloud reflectance as a function of optical thickness, the mean optical thickness of an ensemble of pixels does not correspond to the mean reflectance (or albedo) of those pixels. However, the mean of $\log(\tau_c)$ approximates the radiatively-averaged optical thickness because reflectance plotted as a function of $\log(\tau_c)$ is linear over a wide range of optical thickness (excluding small and large values). That is, the mean of $\log(\tau_c)$ gives an optical thickness that approximately corresponds to the average reflectance of the pixels that comprise the mean. The accuracy of this approximation depends on the nature of the optical thickness probability density function (PDF). Studies on the validity of this approximate for MODIS scenes have been reported by Oreopoulos et al. (2007). A similar study on ice clouds by the same authors is ongoing.

- Log_Mean. L2 cloud optical thicknesses (τ_c) are converted to base 10 logs. Thus a τ_c of 100 would be converted to a value of 2.0, a τ_c of 10 would be converted to a value of 1.0, a τ_c or 1.0 would be converted to a value of 0, a τ_c of 0.1 would be converted to a value of -1.0, and finally a τ_c of 0.01 would be converted to a value of -2.0. So the valid range of this statistic is -2.0 to 2.0 (corresponding to data values ranging from 0.01 to 100). Once the log values of the L2 input pixel data are calculated, a daily mean value of all the log values is computed.
- Log_Standard_Deviation. L2 cloud optical thicknesses (τ_c) are converted to base 10

logs and a standard deviation value of all the L2 log values is computed.

- QA_Log_Mean. L2 cloud optical thicknesses (τ_c) are converted to base 10 logs and a QA-weighted mean value of all the L2 log values is computed (see Section 3.1.2 for details on QA-weighting).
- QA_Log_Standard_Deviation. L2 cloud optical thicknesses (τ_c) are converted to base 10 logs and a QA-weighted standard deviation value of all the L2 log values is computed (see Section 3.1.2 for details on QA-weighting).

3.2.6. Uncertainty statistics. These statistics are only reported for a few selected Cloud Optical Property parameters. The uncertainty estimate accounts for three error sources only (instrument calibration/modeling error, surface albedo, atmospheric corrections), and as such should be considered an expected minimum uncertainty, i.e., the inclusion of additional (uncorrelated) error sources will increase the uncertainty. Daily uncertainty calculations assume all pixel-level error sources are correlated within a grid box. It should be noted that L2 uncertainties are reported in percentage (valid range 0 to 200%) – these are called relative uncertainties. In L3, uncertainties are reported as absolute uncertainties in the same units as the parameter whose uncertainty is being measured. To convert these back into relative uncertainties (%) one must divide the L3 uncertainty by the L3 mean value of the parameter in question. The conversion of relative to absolute uncertainties in the Daily (D3) file was done to make the computation of the multiday (E3 and M3) uncertainties easier to add to the multiday production software.

- Mean_Uncertainty. An estimate of the absolute uncertainty that is derived from L2 pixel-level relative uncertainties.
- QA_Mean_Uncertainty. An estimate of the QA-weighted absolute uncertainty that is derived from L2 pixel-level relative uncertainties (see Section 3.1.2 for details on QA-weighting).

3.2.7. Logarithm of uncertainty statistics. An estimate of the log uncertainty that is derived from pixel-level uncertainties.

- Log_Mean_Uncertainty. An estimate of the log uncertainty that is derived from pixellevel uncertainties.
- QA_Log_Mean_Uncertainty. An estimate of the QA-weighted log uncertainty that is derived from pixel-level uncertainties (see Section 3.1.2 for details on QA-weighting).
- 3.2.8. Histogram. A distribution of L2 pixels.
 - Histogram. A histogram that contains pixel counts showing the distribution of non-fill L2 pixels that went into the computation of L3 statistics for each L3 grid cell. Histogram bin boundaries are set by a local attribute attached to the histogram SDS. Note that these L2 count values are sampled totals for Water Vapor, Cirrus Detection, and Cloud Optical Property parameters (See Table 1). It should also be noted that the lowest (1st) histogram bin includes L2 data points that fall on either the lowest (1st) bin boundary or the 2nd bin boundary. Any L2 data point that falls outside the specified range of bin boundaries is not counted.
- 3.2.9. Histogram of confidence. A distribution of L2 pixel-level retrieval confidence.
 - Confidence_Histogram. A histogram that contains pixel counts showing the number of Questionable (QA = 1), Good (QA = 2), Very Good (QA = 3), and Total Level-2 Input Pixels (# non-fill L2 Pixels) that went into the computation of L3 statistics for each L3 grid cell. Note that these values are sampled totals for Water Vapor, Cirrus Detection, and Cloud Optical Property parameters (See Table 1).
- 3.2.10. Joint histogram. A distribution of L2 pixels comparing one parameter against another.
 - Joint_Histogram. A 2-dimensional histogram that contains pixel counts showing the distribution of non-fill L2 pixels when comparing one parameter against another. Joint

Histogram bin boundaries are set by a local attribute attached to the Joint_Histogram SDS in question. Note that these pixel count values are sampled totals for Cloud Optical Property parameters (See Table 1). It should be noted that only a few Cloud parameters have Joint Histograms defined. The binning logic convention is as follows: the lowest (1st) histogram bin (for both parameters) includes L2 data pixels that fall on either the lowest (1st) bin boundary or the 2nd bin boundary (exactly). All subsequent bins only contain pixels that fall on the higher bin boundary. Any L2 pixels that fall outside the specified bin boundary range are not counted. Pixels for **both** parameters must be defined (non-fill) and within the specified range of bin boundaries for either pixel to be binned.

3.2.11. Joint regression. A regression fit of L2 pixels comparing one parameter against another. Note that these are only computed for a few Aerosol parameters.

- Regression_Slope. A computation of the regression slope that describes the linear fit distribution of non-fill L2 pixels when comparing one parameter against another.
- Regression_Intercept. A computation of the regression intercept that describes the linear fit distribution of non-fill L2 pixels when comparing one parameter against another.
- Regression_R_squared. A computation of the regression r^2 that describes the linear fit distribution of non-fill L2 pixels when comparing one parameter against another.
- Regression_Mean_Square_Error. A computation of the regression mean squared error (MSE) that describes the linear fit distribution of non-fill L2 pixels when comparing one parameter against another.

3.3. Special handling logic in daily statistics

"Special handling" logic was introduced into the production software to add functionality or to mitigate problems in one or more parameters.

3.3.1. Partial retrieval fix for cloud optical thickness

A change in the L2 Cloud Optical Property retrieval algorithm allows for uncertain quality "partial retrievals" in certain marginal retrieval conditions. In this case a Cloud Optical Thickness retrieval is performed but no Cloud Effective Radius retrieval can be done. In this case, the L2 Cloud Optical Property development team requested that these partial retrievals be screened out from L3 statistical computations.

All Cloud Optical Thickness statistics have a unique local attribute called "Masked_With_QA_Usefulness_Flag," which can be set to either "True" or "False." When this attribute is set to true, the L3 algorithm logic prevents partial retrieval data from infiltrating the Cloud Optical Thickness statistics. This logic is applied to all Cloud Optical Thickness statistics.

4.0. Computation of L3 Multiday (8-Day & Monthly) Statistics

There are a number of general L3 Multiday algorithm characteristics:

- a) Only the L3 Daily files are used as input. (Greatly improves algorithm efficiency.)
- b) L3 Daily and Multiday HDF files use an identical grid, SDS dimensions, and histogram bin definitions. (This is an algorithm requirement.)
- c) There is no "valid range" check, only "Fill_Value" grid cells are universally excluded.
- d) One of three weighting schemes are used to compute Multiday statistics from Daily statistics.

4.1. Computational weighting schemes for multiday statistics

The weighting technique used for each SDS is documented in the L3 File Specification (File Spec), which can be found on the MODIS Atmosphere web site (modisatmos.gsfc.nasa.gov/MOD08_M3/spec.html). This information is also attached to each SDS within the HDF file by a local attribute called "Weighting" – and if this is <u>not</u> set to "None," there is an additional local attribute called "Weighted_Parameter_Data_Set," which specifies which SDS in the Daily L3 (input) file is used to weight the daily grid cell statistics in the computation of the multiday statistics.

The various multiday weighting schemes used in L3 are:

- a) **Unweighted** (a simple time-averaged mean, meaningful for computing temperature averages).
- b) **Pixel-count weighted** (a count-averaged mean, used to ensure computed means match means computed from histograms).
- c) **Pixel-count weighted with pixel-count screen** (special logic implemented for Aerosolderived parameters to remove low confidence (low pixel count) daily grids usually occurring at the poleward terminator of the retrieval domain).
- d) **3 Days (D3) Minimum Required to Populate M3**. Starting in Collection 6.1 only, Aerosol related parameters in the Monthly (M3) product required 3 valid Daily (D3) grid cells to populate M3.. This reduced polar and snow contamination.

Table 4a summarizes what multiday weighting scheme is used for each broad set (grouping) of L3 parameters in Collection 6.0.

Product Family	Multiday Weighting Scheme *	Detail
Aerosol 04_L2	Unweighted	Each daily grid given the same weight
Water Vapor 05_L2	Pixel Count Weighted	Each daily grid weighted by the pixel count
Cirrus Detection 06_L2 (CD)	Unweighted	Each daily grid given the same weight
Cloud Top Properties 06_L2 (CT)	Unweighted	Each daily grid given the same weight
Cloud Optical Properties 06_L2 (OD)	Pixel Count Weighted	Each daily grid weighted by the pixel count (categorical, by phase)
Atmosphere Profile	Pixel Count Weighted	Each daily grid weighted by the pixel

Table 4a. Collection 6.0 -- L3 Multiday (E3 & M3) weighting scheme used for categories of parameters.

07_L2	count

Table 4b summarizes the changes made in the multiday weighting scheme is used for Aerosolrelated M3 parameters in Collection 6.1.

Table 4b.	Collection 6	5.1	L3 N	Ionthly	(M3	only)	weighting	scheme	used f	for A	erosol	parameters.
-----------	--------------	-----	------	---------	-----	-------	-----------	--------	--------	-------	--------	-------------

Product Family	Multiday Weighting Scheme *	Detail
Aerosol	3 Day Minimum to Populate	Minimum of 3 Daily (D3) grid cells req'd
U4_LZ		to populate a Monthly (M3) grid.

4.2. Types of multiday statistics computed

A total of 12 different general types of statistics are computed in the multiday (Eight Day or Monthly) products. They are grouped into broad categories and always computed in predetermined sets.

Statistics in the Eight Day and Monthly files are always based on the set of L3 Daily pixels read from the L3 Daily input product files that cover the time period being summarized (8 days or 1 month).

4.2.1. Simple statistics based on the daily mean

Mean_Mean and Std_Deviation_Mean statistics can either be unweighted or weighted depending on a local attribute setting (set per instructions from the L2 algorithm team) in the HDF structure file. An unweighted statistic is computed by taking an average of all L3 daily values for a given 1° × 1° L3 grid cell for the time period in question. Weighted statistics are computed by using information stored in an SDS local attribute called "Weighted_Parameter_Data_Set," typically a Daily Pixel Count or Fraction SDS. To determine the technique used to weight the daily grids, refer to the local attribute "Weighting" found in the file specification or a local attribute attached to each SDS in the HDF file.

- Mean_Mean. The Scientific Data Set (SDS) name suffix "_Mean_Mean" stands for "Mean of the Daily Mean." This statistic is computed by averaging non-fill Daily Means from the L3 Daily files within the (eight day or monthly) time period being summarized. The averaging computation uses the weighting scheme specified in the local attribute "Weighting." This can be set to "Unweighted," "Pixel-Weighted," or "Pixel_Weighted_Screen" (See 4.1 for details).
- Mean_Std. The Scientific Data Set (SDS) name suffix "_Mean_Std" stands for "Standard Deviation of the Daily Mean." This statistic is computed by reading all the non-fill Daily Means from the L3 Daily files within the (eight day or monthly) time period being summarized and then computing their standard deviation.
- Mean_Min. The Scientific Data Set (SDS) name suffix "_Mean_Min" stands for "Minimum of the Daily Mean." This statistic is computed by reading all the non-fill Daily Means from the L3 Daily files within the (eight day or monthly) time period being summarized and reporting the minimum value. There is never any weighting performed for this statistic.
- Mean_Max. The Scientific Data Set (SDS) name suffix "_Mean_Max" stands for "Maximum of the Daily Mean." This statistic is computed by reading all the non-fill Daily Means from the L3 Daily files within the (eight day or monthly) time period being summarized and reporting the maximum value. There is never any weighting performed for this statistic.

4.2.2. Simple statistics based on the daily standard deviation

• Std_Deviation_Mean. The Scientific Data Set (SDS) name suffix "Std_Deviation_Mean" is a proxy for "Mean of the Daily Standard Deviation." This statistic is computed by reading all the non-fill Daily Standard Deviations from the L3 Daily files within the (eight day or monthly) time period being summarized, then
averaging the standard deviations using the same weighting as used for the Mean_Mean.

4.2.3. QA-weighted statistics based on the daily mean

All Mean and Standard Deviation statistics computed can either be unweighted or weighted depending on a local attribute setting in the HDF structure file. An unweighted statistic is computed by taking an average of all L3 daily values for a given 1° L3 grid cell for the time period in question. A weighted statistic is computed by using a "Weighted_Parameter_Data_Set," typically a Pixel Count or Fraction SDS, to weight each of the Daily grid cell values. To determine the technique used to weight the daily grids, refer to the local attribute "Weighting" found in the file specification or a local attribute attached to each SDS in the HDF file.

- QA_Mean_Mean. The Scientific Data Set (SDS) name suffix "QA_Mean_Mean" stands for "Mean of the Daily QA-weighted Mean." This statistic is computed by averaging all the non-fill Daily QA-weighted Mean grid cells from the L3 Daily files within the (eight day or monthly) time period being summarized using the same weighting used for the Mean_Mean.
- QA_Mean_Std. The Scientific Data Set (SDS) name suffix "QA_Mean_Std" stands for "Standard Deviation of the Daily QA-weighted Mean." This statistic is computed by reading all the non-fill Daily QA-weighted Means from the L3 Daily files within the (eight day or monthly) time period being summarized, then computing their standard deviation.
- QA_Mean_Min. The Scientific Data Set (SDS) name suffix "QA_Mean_Min" stands for "Minimum of the Daily QA-weighted Mean." This statistic is computed by reading all the non-fill Daily QA-weighted Means from the L3 Daily files within the (eight day or monthly) time period being summarized and reporting the minimum value. There is no additional weighting performed for this statistic.
- QA_Mean_Max. The Scientific Data Set (SDS) name suffix "QA_Mean_Max" stands for "Maximum of the Daily QA-weighted Mean." This statistic is computed by reading

all the non-fill Daily QA-weighted Means from the L3 Daily files within the (eight day or monthly) time period being summarized and reporting the maximum value. There is no additional weighting performed for this statistic.

- QA_Std_Deviation_Mean. The Scientific Data Set (SDS) name suffix "QA_Std_Deviation_Mean" is a proxy for "Mean of the Daily QA-weighted Standard Deviation." This statistic is computed by reading all the non-fill Daily QA-weighted Standard Deviations from the L3 Daily files within the (eight day or monthly) time period being summarized, then averaging the standard deviations using the same weighting as used for the Mean_Mean.
- 4.2.4. Fraction statistics. These statistics are only used for computing cloud fraction.
 - FMean. Mean of the Daily Cloud Fraction.
 - FStd. Standard Deviation of the Daily Cloud Fraction.

4.2.5. Pixel count statistics. These statistics are only computed for some parameters. It is similar to a histogram computation except that instead of multiple bins there is only a single bin that covers the full range of all non-fill L2 data that are read in for each L3 $1^{\circ} \times 1^{\circ}$ grid cell.

• Pixel Count. The count of all non-fill L2 pixel data that are read in and used to compute statistics at L3. This is computed by simply summing the Daily Pixel Count SDS.

4.2.6 Logarithm statistics. These statistics are only computed for cloud optical thickness parameters. The mean statistic is typically weighted using the "Pixel_Weighted" scheme, which weights each daily mean by a pixel count SDS (this allows the multiday means to match those computed from histograms).

- Log_Mean_Mean. Mean of the Daily Log Mean.
- Log_Mean_Std. Standard Deviation of the Daily Log Mean.
- Log_Mean_Min. Minimum of the Daily Log Mean.

- Log_Mean_Max. Maximum of the Daily Log Mean.
- Log_Std_Deviation_Mean. Mean of the Daily Log Standard Deviation.
- QA_Log_Mean_Mean. Mean of the Daily QA Log Mean.
- QA_Log_Mean_Std. Standard Deviation of the Daily QA Log Mean.
- QA_Log_Mean_Min. Minimum of the Daily QA Log Mean.
- QA_Log_Mean_Max. Maximum of the Daily QA Log Mean.
- QA_Log_Std_Deviation_Mean. Mean of the Daily QA Log Standard Deviation.

4.2.7. Uncertainty statistics. These statistics are only reported for a few selected Cloud Optical Property parameters. Monthly uncertainty calculations are derived from daily uncertainties; calculations assume that individual daily uncertainties are uncorrelated with respect to each other. The equation to compute multiday uncertainties is as follows.

Uncertainty =
$$\sqrt{\sum_{i} w_i^2 \sigma_i^2} / \sqrt{\sum_{i} w_i^2}$$
, (2)

where,

 σ_i = DailyUncertainties

 $w_i = \text{DailyPixelCountWeights}$

It should be noted that L2 uncertainties are reported in percentage (valid range 0 to 200%) – these are called relative uncertainties. In L3, uncertainties are reported as absolute uncertainties in the same units as the parameter whose uncertainty is being measured. To convert these back into relative uncertainties (%) one must divide the L3 uncertainty by the L3 mean value of the parameter in question. The conversion of relative to absolute uncertainties in the Daily (D3) file was done to make the computation of the multiday (E3 and M3) uncertainties easier to add to the multiday production software.

- Mean_Uncertainty. A multiday absolute uncertainty estimate derived from the daily absolute uncertainty estimate.
- QA_Mean_Uncertainty. A multiday QA-weighted absolute uncertainty estimate

derived from the daily QA-weighted absolute uncertainty estimate.

4.2.8. Logarithm of uncertainty statistics. An estimate of the log uncertainty that is derived from pixel-level uncertainties.

- Log_Mean_Uncertainty. A multiday absolute log uncertainty estimate derived from the daily absolute log uncertainty estimate.
- QA_Log_Mean_Uncertainty. A multiday QA-weighted absolute log uncertainty estimate derived from the daily QA-weighted absolute log uncertainty estimate.
- 4.2.9. Histogram. A distribution of L2 pixels.
 - Histogram. A histogram that contains pixel counts showing the distribution of non-fill L2 Pixels that went into the computation of L3 statistics for each L3 grid cell. In the eight day and monthly products, this is computed by simply summing the daily counts in each histogram bin. Histogram bin boundaries are set by a local attribute attached to the histogram SDS. Note that these L2 count values are sampled totals for Water Vapor, Cirrus Detection, and Cloud Optical Property parameters (See Table 1). It should also be noted that the lowest (1st) histogram bin includes L2 data points that fall on either the lowest (1st) bin boundary or the 2nd bin boundary (exactly). All subsequent bins only contain points that fall on the higher bin boundary. Any L2 data point that falls outside the specified range of bin boundaries is not counted.
- 4.2.10. Histogram of confidence. A distribution of L2 pixel-level retrieval confidence.
 - Confidence_Histogram. A histogram that contains pixel counts showing the number of Questionable (QA = 1), Good (QA = 2), Very Good (QA = 3), and Total Level-2 Input Pixels (# non-fill L2 Pixels) that went into the computation of L3 statistics for each L3 grid cell. Note that these values are sampled totals for Water Vapor, Cirrus Detection, and Cloud Optical Property parameters (See Table 1). In the eight day and monthly products, this is computed by simply summing the daily counts in each bin.

- 4.2.11. Joint histogram. A distribution of L2 pixels comparing one parameter against another.
 - Joint_Histogram. A 2-dimensional histogram that contains pixel counts showing the distribution of non-fill L2 Pixels comparing one parameter against another. It should be noted that only a few Cloud parameters have Joint Histograms defined. In the eight day and monthly products, this is computed by simply summing the daily counts in each joint histogram bin. Histogram bin boundaries are set by a local attribute attached to the histogram SDS. Note that these L2 count values are sampled totals for Cloud Optical Property parameters (See Table 1). It should also be noted that the lowest (1st) histogram bin includes L2 data points that fall on either the lowest (1st) bin boundary or the 2nd bin boundary (exactly). All subsequent bins only contain points that fall on the higher bin boundary. Any L2 data point that falls outside the specified range of bin boundaries are not counted.

4.2.12. Joint regression. A regression fit of L2 pixels comparing one parameter against another. Note that these are only computed for a few Aerosol parameters.

- Regression_Slope. An unweighted mean of the Daily regression slope that describes the linear fit distribution of L2 pixels when comparing one parameter against another.
- Regression_Intercept. An unweighted mean of the Daily regression intercept that describes the linear fit distribution of non-fill L2 pixels when comparing one parameter against another.
- Regression_R_squared. An unweighted mean of the Daily regression r^2 that describes the linear fit distribution of non-fill L2 pixels when comparing one parameter against another.
- Regression_Mean_Square_Error. An unweighted mean of the Daily regression mean squared error (MSE) that describes the linear fit distribution of non-fill L2 pixels when comparing one parameter against another.

5.0. Reading and Unpacking HDF File Data

Hierarchical Data Format (HDF) is the standard data format for all NASA Earth Observing System (EOS) data products. HDF is a multi-object file format developed by the HDF Group at the National Center for Supercomputing Applications (NCSA) at the University of Illinois (www.ncsa.uiuc.edu).

The HDF Group developed HDF to assist users in the transfer and manipulation of scientific data across diverse operating systems and computer platforms, using Fortran and C calling interfaces and utilities. HDF supports a variety of data types: n-Dimensional scientific data arrays, tables, text annotations, several types of raster images and their associated color palettes, and metadata. The HDF library contains interfaces for storing and retrieving these data types in either compressed or uncompressed formats.

For each data object in an HDF file, predefined tags identify the type, amount, and dimensions of the data, and the file location of various objects. The self-describing capability of HDF files helps users to fully understand the file's structure and contents from the information stored in the file itself. A program interprets and identifies tag types in an HDF file and processes the corresponding data.

Because many Earth science data structures need to be geolocated, the HDF Group developed the HDF-EOS format with additional conventions and data types for HDF files. HDF-EOS supports three geospatial data types: grid, point, and swath, providing uniform access to diverse data types in a geospatial context. All MODIS Atmosphere Level 3 HDF files use the grid geospatial data type. The HDF-EOS software library allows a user to query or subset of the contents of a file by Earth coordinates and time if there is a spatial dimension in the data. Tools that process standard HDF files also read HDF-EOS files; however, standard HDF library calls cannot access geolocation data, time data, and product metadata as easily as with HDF-EOS library calls.

Finally, it's important to note that all MODIS data are archived using HDF-EOS4, which is based on HDF4. This file format is <u>not</u> compatible with the newer HDF5 format; and there are no plans to ever switch to HDF5 for MODIS data.

5.1. Descaling the SDS data

The local attributes "scale_factor" and "add_offset," attached to each and every SDS, are used for the conversion of stored (packed) SDS integer data to geophysical floating point numbers. The formula to descale the data follows conventional HDF usage (see HDF User's Guide):

Geophysical Float Value = scale_factor * (Stored Integer - add_offset). (3)

It is probably confusing to most users that the HDF convention calls the offset "add_offset" even though it's subtracted from the stored integer when unpacking the data. It seems likely that this terminology originated from the programmer's, and not the end user's, perspective, since to pack the data the offset is added.

The units of the unpacked geophysical floating point value are indicated by the "units" local attribute that is also provided with each SDS.

The "valid_range" local attribute applies to the packed data (before de-scaling). The two valid range values given are the expected low and high values of valid (non-fill) packed data. Note that **no** valid range screening on the input L2 data or the output L3 data is performed. The reason for this is sometimes absolute valid ranges are difficult to determine in advance and the algorithm developers wanted to avoid the potential loss of good data. Therefore users should not be surprised to find non-fill data points that fall outside the documented valid range; however it should raise a flag for the user to make sure they are reading the data correctly.

5.2. Definitions of local attributes

Attached to each Scientific Data Set (SDS) within an HDF file are a number of local attributes. These local attributes serve as a key to unpack the data, drive the logic in the L3 software, and finally provide documentation for end users.

5.2.1. Local attributes used in all L3 files. There is a set of local attributes that can be used in all L3 files (Daily, Eight-Day, and Monthly). Note that not all of these are attached to every SDS

(only the local attributes necessary are attached).

- long_name. A character string description of the SDS.
- units. Units of the unpacked data (if there are no units, "none" is specified).
- valid_range. An array of two numbers that describe the expected low and high values (valid range) of the packed data (before applying the scale and offset); ignoring the Fill Value.
- FillValue. The value of missing or fill data in the packed SDS.
- scale_factor. The scaling factor used to unpack the data (see Eq. (2)).
- add_offset. The offset used to unpack the data (see Eq. (2)).
- **Statistic_Type**. A fixed string that specifies the statistical group. (This attribute drives the logic in the operational production program).
- Quality_Assurance_Data_Set. This specifies which L2 SDS to read to obtain the L2 QA. (In E3 and M3 HDF files this is for documentation only.)
- QA_Byte. Specifies which L2 SDS byte to read to obtain the L2 QA (in the E3 and M3 files this is for documentation only).
- QA_Useful_Flag_Bit. Specifies which L2 SDS bit to read to obtain the L2 QA Useful Flag bit. (In E3 and M3 HDF files this is for documentation only.)
- QA_Value_Start_Bit. Specifies which L2 SDS bit to begin reading to obtain the L2 QA Confidence Flag. (In E3 and M3 HDF files this is for documentation only.)
- QA_Value_Num_Bits. Specifies the number of L2 SDS bits to read to obtain the L2 QA Confidence Flag (In E3 and M3 HDF files this is for documentation only.)
- Aggregation_Data_Set. Specifies which L2 SDS to read to obtain the L2 Aggregation information. (In the E3 and M3 HDF files this is for documentation only.)
- Aggregation_Byte. Specifies which L2 SDS byte to read to obtain the L2 Aggregation information (in the E3 and M3 files this is for documentation only).
- Aggregation_Value_Start_Bit. Specifies which L2 SDS bit to begin reading to obtain the L2 Aggregation information. (In E3 and M3 HDF files this is for documentation

only.)

- Aggregation_Value_Num_Bits. Specifies the number of L2 SDS bits to read to obtain the L2 Aggregation information. (In E3 and M3 HDF files this is for documentation only.)
- Aggregation_Valid_Category_Values. Specifies all the Aggregation values that are valid (not fill). (In E3 and M3 HDF files this is for documentation only.)
- Aggregation_Category_Values. Specifies all the Aggregation values that are to be used to aggregate the statistic. (In E3 and M3 HDF files this is for documentation only.)
- Level_2_Pixel_Values_Read_As. A fixed string that tells the operational production program what the format is of the L2 input data (byte, integer, real).
- Included_Level_2_Nighttime_Data. A documention string telling the user if the Statistic contains any nighttime data. (Set to True or False.)
- Histogram_Bin_Boundaries. An array of numbers describing the histogram bin boundaries of the primary parameter.
- Joint_Parameter_Histogram_Bin_Boundaries. An array of numbers describing the histogram bin boundaries of any secondary parameter. (Used for Joint Histogram statistics.)

5.2.2. Local attributes used in the L3 daily file only. There is a set of local attributes that are used only in the L3 Daily file.

- Derived_From_Level_2_Data_Set. L2 SDS read to obtain the input data.
- Masked_With_QA_Usefulness_Flag. Set to "True" or "False." If True, the QA Usefulness Flag is used to screen input data. (This attribute is used to screen out partial cloud optical property retrievals from L3).
- Wave_Band. Used to specify what band to read when a L2 input parameter has more than 1 solution (wave_band).
- Joint_Parameter_Wave_Band. Used to specify what band to read when a L2 input

parameter that is being used as a joint parameter in L3 has more than 1 solution (wave_band).

5.2.3. Local attributes used in the L3 eight day and monthly file only. There are a set of local attributes that are used only in the L3 Eight Day and Monthly file. These are:

- Derived_From_Level_3_Data_Set. Daily SDS read to obtain the input data.
- Weighting. Specifies what weighting scheme is used to average the Daily L3 pixels (see Section 4.1).
- Weighted_Parameter_Data_Set. Specifies what Daily SDS is used for weighting the Daily L3 pixels. This local attribute is used (specified) only when Weighting = "True."

6.0. Using the MODIS-Atmosphere Web Site

A user-friendly web-based interface on the MODIS-Atmosphere web site can be used to view primary statistics in all the MODIS-Atmosphere L3 data products. Users may select any daily, 8-day, or monthly HDF files and any group of parameters to view (see Figure 14). Once you select the product group, date, and projection; select 'Go' to see the resulting images (see Figure 15).

	MODIS Atmosphere: Images	: C005 Terra L3	Low-Resolution Monthl	y Global (MOD08_M3) Images
		Nash Climata	Univ of Colorado — Funo	imantan Catallitana	MODIC-
	phere Earth Observatory H&R E	slock Climate	Univ of Colorado V Exper	iments V Satellites V	MODIS
MODIS AT	nosphere 🔨		and In Ballaconter	-	
A HOME PRODUCTS	IMAGES DATA ISSUES NEWS STAFF	FORUM REFEREN	CE TOOLS HELP		
AEROSOL	H2O VAPOR CLOUD PROFILE	CLD. MASK J	OINT (Level-2 Products)		
DAILY	EIGHT DAY MONTHLY (Level-3 P	Products) ALE	BEDO NDVI ECOSYSTEI	M (Level-3 Ancillary)	
IMAGES	Terra Browse Imagery				
C005 Terra Images	Product Selection				
L1B GRANULES	1. Select 'Derived From'	Product Group:			
L3 LOW-RES DAILY L3 LOW-RES EIGHT-DAY L3 LOW-RES MONTHLY	Aerosol (MOD04_L2) Global Only Land Only Crean Only		Place your mouse pointer over the group names to view the parameters		
C005 Aqua Images	Water Vapor (MOD0	5 L2)	in each group		
L1 B GRANULES	O All				
L3 LOW-RES DAILY	Cloud (MOD06_L2)				
L3 LOW-RES EIGHT-DAY	Cloud Top Properti	es			
L3 LOW-RES MONTHLY	Cloud Optical Prop	erties			
	Atmosphere Profile	(MOD07_L2)			
	2. Select Month Period:				
	Year	Day of Year:		Note Image Gans:	
	2008 🗘	2 \$ 1 \$	3 \$	Note image Caps.	
		Calendar Davr		None	
			31 1		
		July			
	Current July Selection:	2008			
	3. Select Map Projection:	:			
	O LAT-LON (Equal An	gle Grid)	(for quality assessment)		
	HAMMER-AITOFF	(Equal Area Grid)	(for presentations)		
	4. Click Go:				
	Go!				

Figure 14. The web-based interface that allows viewing of primary statistical images in all L3 HDF files. A user selects a "derived-from" product group, the time period, and map projection.

For Daily and Eight day products, images can only be viewed in the native latitudelongitude (rectangular) grid. For Monthly browse images both the native equal-angle (latitudelongitude) grid, as well as an equal-area (Hammer-Aitoff) grid are available.

Figure 15. The L3 browse images showing the Mean image by default. Other statistical images can be viewed by using a mouse-over function implemented on the statistic bars to the right of each image. The color bar is a discrete modified rainbow and the data scale has been pre-determined to maximize detail.

Users should be aware that the Hammer-Aitoff (equal-area) version of the L3 browse image is derived directly from the Latitude-Longitude (equal-angle) image using a packaged Interactive Data Language (IDL) function. This function can cause some mild distortion and occasionally even loss of data while converting from one map projection to another in regions (especially high latitudes) where there are sparse data (data gaps); so if one is performing any detailed quantitative analysis on SDSs that contain data gaps, the native Latitude-Longitude version is the preferred choice for viewing (cf. Figure 16).

A discretized modified-rainbow color bar is applied to each image and the data scale is optimized to maximize image detail. Fill (missing) data are always colored black. Multiple statistics (SDSs) for a single parameter can be viewed by using a built-in "mouse-over" functionality on the web page by rolling your mouse over the statistic "bars" to the right of each image (see Figure 15).

Finally there is a myriad of additional information that can be gleaned from the

Figure 16. Identical Collection 004 data mapped on the native Latitude-Longitude grid (top) and remapped on the Hammer-Aitoff grid bottom. Note the distortion in sparse data regions especially at high latitudes on the Hammer grid (e.g., the disappearance of the bad data scans (purple streaks) in the southern Ocean); however in solid data regions (30°N to 30°S) the Hammer remapping shows little distortion.

MODIS-Atmosphere web site, including a complete file specification, details on the format and content, modification history, and known problems. Also available are programs and tools that can be uses to read and image L3 HDF SDSs.

7.0. Interpretation of Data: Frequently Asked Questions

Since launch, MODIS data users have asked the L3 development team and associated MODIS Atmosphere staff a number of questions. This section summarizes the most common questions and their answers.

7.1. How do the cloud mask and optical properties 'cloud fractions' differ? And further, how do I recover the total number of pixels (the fraction denominator) used in the computation of the L3 cloud mask and L3 cloud optical properties 'cloud fractions'?

In order for users to understand the meaning of cloud fraction in Collection 6 (and later) MODIS L3 products, an understanding of how cloud fraction is defined and computed in each L3 cloud fraction parameter is needed. From the simplest perspective, cloud fraction at L3 is the number of cloudy L2 pixels (that fit pre-determined criteria, such as daytime only or liquid water clouds only) divided by the total number of non-fill L2 pixels within a 1° × 1° L3 grid box. The key detail is how each parameter defines a pixel as "cloudy" and what domain of pixels is used in the computation of the denominator.

There are two primary cloud fraction parameters in L3 MODIS Atmosphere files.

7.1.1. Cloud mask cloud fraction

The L3 cloud fraction that garners the most interest from MODIS data users is cloud fraction derived directly from the 35_L2 Cloud Mask (note the 35_L2 Cloud Mask flags are duplicated in the 06_L2 Cloud product). These L3 cloud mask cloud fraction SDSs have the prefix

- Cloud_Fraction
- Cloud_Fraction_Day
- Cloud_Fraction_Night

The first parameter listed above contains both day and night retrievals, the second parameter contains daytime only retrievals (solar zenith angle less than or equal to 85°), and the third parameter contains nighttime only retrievals.

The L2 cloud mask cloud fraction, which L3 uses to compute statistics, is calculated in the

cloud top properties algorithm and stored in the 06_L2 HDF file. The L2 cloud mask cloud fraction is derived in L2 (the L2 SDS names are identical to those shown above) by reading the 1 × 1 km Cloud Mask "Cloudiness Probability Flags" or "Cloudiness Flags" (see Table 5).

L2 QA Flag	Flag Value	Meaning
Cloud Mask Status Flag	0	Undetermined
	1	Determined
Cloud Mask Cloudiness Flag	0	Confident Cloudy (or Fill if Status Flag = 0)
	1	Probably Cloudy
	2	Probably Clear
	3	Confident Clear

Table 5. Two key L2 Cloud Mask Flags used to compute the L2 Cloud Mask Cloud Fraction.

The Cloud Mask Cloudiness Flag can have the following settings: 0 = confident cloudy, 1 = probably cloudy, 2 = probably clear, and 3 = confident clear. In the computation of the L2 cloud mask cloud fraction, the first two flags are assigned 100% cloudy and the last two flags 100% clear. Then in each 5 × 5 km L2 retrieval box, the average L2 cloudiness is computed by computing the fraction of the 1-km pixels that are cloudy.

In the L3 Daily product, the cloud mask cloud fraction is computed by taking an unweighted average of these 5×5 km L2 cloud fractions in each $1^{\circ} \times 1^{\circ}$ L3 grid box.

7.1.2. Cloud optical properties cloud fraction

The second most utilized L3 cloud fraction is that derived from the Cloud Optical Properties retrieval. All optical property cloud fractions are computed for **daytime scenes only** (solar zenith angle less than or equal to 81.3731°). Therefore when making comparisons, users want to compare with the Cloud Mask Cloud Fraction for Daytime only (Cloud_Fraction_Day). Note that the Solar Zenith Angle domain is slightly more restrictive in the Cloud Optical Property Cloud Fractions vs. the Cloud Mask Cloud Fraction (solar zenith angles less than or equal to 85°)) – which means the domain of computed cloud fractions extends slightly more poleward for the Cloud Mask Cloud Fractions.

The L3 Cloud Optical Property related cloud fraction L3 SDSs have the prefix

• Cloud_Retrieval_Fraction_Combined

- Cloud_ Retrieval_Fraction_Liquid
- Cloud_ Retrieval_Fraction_Ice
- Cloud_ Retrieval_Fraction_Undetermined

The first parameter represents the cloud fraction for all cloud phases; the second, liquid water clouds only; the third, ice clouds only; and the forth, undetermined cloud phase clouds only.

Unlike the cloud mask cloud fraction (detailed in section 7.1.1.), which is initially computed in L2, the optical property cloud fraction is not available in L2. The optical property cloud fraction is computed in L3 using the Primary Cloud Retrieval Phase Flag and the Primary Cloud Retrieval Outcome Flag (both a part of the Quality_Assurance_1km SDS in 06_L2 product files) for a sampled set of L2 grid points (every 5th row, every 5th column (see Section 2.2)). See Table 6.

Every sampled L2 grid point that has a Primary Cloud Retrieval Outcome Flag = 1 (Retrieval Successful) and a Primary Cloud Retrieval Phase Flag of 2 (Liquid Water Cloud), 3 (Ice Cloud), or 4 (Undetermined Phase Cloud) are taken as 100% cloudy for the cloud phase category in question.

L2 QA Flag	Flag Value	Meaning
Primary Cloud Retrieval Phase	0	Cloud Mask Undetermined (Missing or Fill)
Flag	1	Not Processed (Typically Clear)
	2	Liquid Water Cloud
	3	Ice Cloud
	4	Undetermined Phase Cloud
Primary Cloud Retrieval	0	Retrieval Not Attempted or Unsuccessful
Outcome Flag	1	Retrieval Successful

Table 6.	Two key L2 QA	Flags used to	compute the	Cloud Optical	Properties	Cloud Fraction.
----------	---------------	---------------	-------------	---------------	------------	-----------------

There was a major change in how the Cloud Optical Property L3 Cloud Fraction were computed between Collection 5/51 and Collection 6.

In Collection 5/51, if any of these aforementioned L2 grid points have a Primary Cloud Retrieval Outcome Flag = 0 (Retrieval Not Attempted or Unsuccessful) then they were thrown out of the computation completely (even if the Cloud Retrieval Phase Flag was set to a valid phase). This logic was implemented because the L2 Cloud Optical Properties retrieval algorithm sets the Phase Flag before successful completion of the retrieval. In the unsuccessful case, the retrieval algorithm might have become unsure of the cloud phase, or even if the scene actually contains a cloud. Therefore it was decided to use the Retrieval Outcome Flag as a screen when calculating the L3 cloud fraction.

In Collection 6, it was decided to include failed retrievals in the counts used in the denominator of the L3 cloud fraction computation. This will effectively reduce the computed L3 cloud fractions when comparing C5/51 results with C6 results. So users should be aware of this change between collections.

Finally, sampled L2 grid points that have a Primary Cloud Retrieval Phase Flag of 1 (Not Processed) are counted as 100% clear. These retrievals will always have a Retrieval Outcome Flag of 0 (Unsuccessful).

The optical property cloud fractions are then computed from the following equations:

Cloud Fraction Liquid = SCRW / Total Cloud Fraction Ice = SCRI / Total Cloud Fraction Undetermined = SCRU / Total Cloud Fraction Combined = (SCRW+SCRI+SCRU) / Total

where,

SCRW = Number of Successful and Unsuccessful Liquid Water Cloud Retrievals

SCRI = Number of Successful and Unsuccessful Ice Cloud Retrievals

SCRU = Number of Successful and Unsuccessful Undetermined Phase Cloud Retrievals

Total = Number of Clear + Successful and Unsuccessful Cloudy Retrievals for all Phases

So in summary, in Collection 5/51, the Cloud Optical Properties Cloud Fraction used only clear pixels and successfully retrieved pixels in the computation of the denominator – but in Collection 6, the Cloud Optical Properties Cloud Fraction used clear pixels, successfully retrieved

pixels, and unsuccessfully retrieved pixels, in the computation of the denominator, which effectively causes a slight reduction in the computed cloud fractions between C5/51 and C6.

Finally, in order to provide a clean (easy) way for L3 data users to keep track of the total number of pixels in these various key categories (successful & phase, unsuccessful & phase, cloud mask clear sky, and clear sky restoral) – new histograms were added to the L3 HDF product in Collection 6.

These four new Histograms are called:

- **COP_Phase_Cloudy** (dimension = 3)
 - o Counts in 3 categories are stored: Liquid Water, Ice, Undetermined Phase
 - Both Retrieval Success and Failure pixels are included
 - Clear Sky Restoral (CSR) Flag = 0, which means not restored (i.e. "cloudy")
- **COP_Phase_Partly_Cloudy** (dimension = 3)
 - Counts in 3 categories are stored: Liquid Water, Ice, Undetermined Phase
 - o Both Retrieval Success and Failure pixels are included
 - \circ Cloud Sky Restoral (CSR) Flag = 1 or 3, which means "partly cloudy"
- **COP_Phase_CloudMaskClear** (dimension = 1)
 - Counts in 1 category are stored: Cloud Mask Clear
 - Clear Sky Restoral (CSR) Flag = 0, which means not restored (i.e. "the pixel was already set to clear")
- **COP_Phase_RestoredToClear** (dimension = 1)
 - Counts in 1 category are stored: Cloud Optical Properties said restore to clear, even though Cloud Mask said cloudy
 - \circ Cloud Sky Restoral (CSR) Flag = 2, which means "restored to clear"

These four histograms provide a simple way for users to determine the counts of pixels in these 8 categories without having to post process L3 data.

7.1.3. Post-processing L3 data to retrieve the fraction denominator

Users can post process L3 fraction data in order to retrieve the fraction denominator by dividing the "Pixel_Count" SDS by the "Fraction" SDS. An example image of this sort of post process is shown below in Figure 17. It should be noted that one can only recover a value for 1° \times 1° L3 grid cells where the fraction was GT 0 (since you cannot divide by 0 and get a real number) – which is why there are dark gray "holes" in the post processed image, as the areas where a division by 0 was to take place were hardwired to 0.

Figure 17. A post-processed derivation of the denominator used to compute the Cloud Retrieval Fraction. This is showing the total pixel counts used in the computation of the fraction. The missing data gaps (shown in gray) show areas where the Cloud Fraction was 0, so no denominator could be "backed out" of the computation.

Now by using the four new COP_Phase histograms described in the previous section, one can now easily compute the denominator used in the Cloud Optical Property Cloud Fraction by simply summing up all 8 categories in the new histograms. An example of this computation is shown in Figure 18.

Figure 18. In Collection 6, users no longer need to try to post process (or back out) the total pixel counts used in the determination of the Cloud Optical Properties Cloud Fraction (as shown in the previous Figure 17). Users can now simply sum the new C6 "COP_Phase" Histograms. A result of this sum is shown in Figure 18. This no longer has the issue of missing total counts where the Fraction was computed as 0.

It is possible to approximate this computation by doing this same exercise with the Solar Zenith Angle SDS. By dividing the Pixel_Count SDS by the Fraction, one computes the image shown in Figure 19. This ends up matching the sum of the COP_Phase histograms shown in the previous image (within a small round off error increment) – with the only difference being the Solar Zenith computed denominator extends to regions where the Solar Zenith Angle was less than or equal to 85 degrees, while the sum of the COP_Phase histogram image shown previously is only defined within the Cloud Optical Properties domain of Solar Zenith Angle less than or equal to 81.373 degrees. So these two images differ only near the poles.

Figure 19. In C5/51 and earlier collections, users could approximate the total pixels used in the Fraction computation by looking at the SDS Solar_Zenith_Pixel_Counts. However this SDS extends further poleward than the Daytime domain used for Cloud Optical Property Cloud Fractions, so there are problems in making one-to-one comparisons as you move towards the poles.

As final Cloud Cloud the Optical Properties Fraction note, а (Cloud_Retrieval_Fraction_Combined), which is computed for daytime scenes only, can show some marked divergence from the Cloud Mask Cloud Fraction for Daytime (Cloud_Fraction_Day), even though the Cloud Optical Properties algorithm is based on (starts with) results from the Cloud Mask. This can be seen on examination of Figure 20.

Figure 20. A comparison of a Daily Cloud Mask Cloud Fraction for daytime (top) and Optical Properties Cloud Fraction for clouds of all phases (also computed for daytime only) (bottom). It is normal to find the optical property cloud fractions smaller than the cloud mask cloud fraction, since failed optical property retrievals are thrown out and a "clear sky restoral" algorithm in the optical properties code might set some cloudy cloud mask pixels back to clear.

One should remember that the L3 Cloud Optical Property Cloud Fraction is computed from <u>sampled</u> L2 cloudiness at 5-km resolution in the $1^{\circ} \times 1^{\circ}$ L3 grid box; while the Cloud Mask Cloud Fraction is computed in the $1^{\circ} \times 1^{\circ}$ L3 grid box from <u>average</u> cloud fractions in the 5×5 km region (not sampled at L3). Although it is not believed this sampling vs. averaging difference has a serious impact on the final results, users should be aware that the two cloud fractions are computed differently.

The primary benefits to the cloud optical properties cloud fraction is it allows an analysis of the cloud fractions separated by cloud phase (liquid water clouds vs. ice clouds). The primary benefits to the cloud mask cloud fraction is it's the most direct way to view cloud mask results; and has cloud fraction results at night.

As to the question of which of these two cloud fraction SDSs more accurately represents "real world" cloudiness, Figure 20 shows a global RGB composite (tuned to show clouds and aerosol as white) for the same time period as the two cloud fraction images in Figure 20. Although there are large areas of broken clouds in the image, it's not clear using a L1B image at this scale, which cloud fraction did a better job.

Figure 21. RGB true-color composite global image for 23 June 2008 (daytime only). Clouds and aerosol appear white.

To further this investigation, consider the region of the Arabian Sea to the west of India and to the southeast of Oman and Yemen in Figure 20, where the Cloud Mask Cloud Fraction shows over 90% cloudy and the Cloud Optical Properties Cloud Fraction shows less than 25% cloudy. Which is closer to the truth?

Figure 22 shows a zoom of this region for all three previous images mapped on a latitudelongitude grid to minimize mapping distortion. The L1B image in Figure 22 shows a distinct signature of blowing dust and sand from the African continent towards and over India. Added to this set of images is an Aerosol Optical Depth over ocean image that confirms high concentrations of blowing dust over portions of the Arabian Sea (dark red color). It seems clear that for this case and this region, the Cloud Mask interpreted the blowing dust and sand over the Arabian Sea as cloud, whereas the Cloud Optical Properties algorithm was able to correctly reduce the measured cloudiness over this region.

Cloud Mask Cloud Fraction Daytime

Cloud_Optical Properties Combined Phase Cloud Fraction Aerosol Effective Optical Depth over Ocean

Figure 22. Top Image: RGB true-color composite regional image for 23 June 2008 (daytime only) over the Arabian Sea west of India. Clouds and aerosol appear white. Second Row Image Left: Cloud Mask Cloud Fraction. Center: Cloud Optical Properties Cloud Fraction. Right: Aerosol Optical Depth over Ocean.

This same effect can be seen over the Atlantic Ocean west of Africa's Sahara Desert where more blowing dust (sand) was interpreted by the Cloud Mask as cloud (refer back to Figure 20).

However, it should be noted that there are other areas where the Cloud Mask cloud fraction will do a better job than the Cloud Optical Properties cloud fraction, namely regions where there are large quantities of broken (scattered) cloudiness, especially found over ocean. This is primarily due to a "clear sky restoral" algorithm in the Cloud Optical Properties code, which restores pixels identified as cloud by cloud mask to clear if they touch another pixel that was identified as clear. This clear sky restoral "edge detection" algorithm was implemented because these cloud edge pixels are not retrieved (for all cloud optical property parameters) with enough accuracy, in general, to warrant their inclusion. In this case, the Cloud Optical Properties cloud fraction will show numbers that are most likely too low when compared to the Cloud Mask cloud fraction.

7.2. What do the 'undetermined' and 'combined' cloud phases mean?

The undetermined cloud phase means the cloud optical properties retrieval algorithm could not make a determination of the cloud phase (liquid water or ice). This may have been caused by viewing anomalies in the retrieval (sunglint), contamination of the scene by aerosol, or a multi-layer cloud with mixed phases (e.g., thin cirrus overlying liquid water clouds). For these undetermined retrievals the liquid water libraries are used in the cloud optical properties retrievals, but the retrievals are considered to be of lower confidence (and quality) than those that are placed in one of the other primary phase categories.

The combined phase is simply a combination of all cloud phase categories: liquid water, ice, and undetermined.

7.3. What is the minimum illumination requirement for a MODIS retrieval?

Some MODIS parameters produce results for both daytime and nighttime retrievals; so for those there is no minimum illumination requirement.

Other MODIS parameters are only retrieved for "Daytime Only" scenes. This second category includes Aerosol, Water Vapor, and Cloud Optical Properties. Cloud Top Properties retrieves data for both Day and Night, and separates these retrievals into Day and Night categories.

The Aerosol algorithm (which produces Aerosol and Water Vapor parameters) requires the solar zenith angle to be less than 72°. So it's the most restrictive of the Daytime-only retrieved

MODIS parameters.

The Cloud Optical Properties algorithm (Cloud Effective Radius, Cloud Optical Thickness, etc) also only produces results (retrieves) for Daytime scenes only, and further only where the Solar Zenith Angle is less than or equal to 81.373°.

The Cloud Top Properties algorithm (Cloud Top Pressure, Cloud Top Temperature, etc) retrieves for both Day and Night scenes, and tags data as "Daytime" or "Day" when the Solar Zenith Angle is less than or equal to 85°. Outside of that window, data is tagged as "Night".

7.4. What is the best way to display (marginal) histogram data?

Most parameters in the L3 product files have marginal (1D) histogram data. (For a list of parameters with marginal histogram data, see Appendix B. For a summary of the histogram boundaries for all parameters for Collection 005 and/or Collection 006, see Appendix D.)

Marginal histogram data are typically displayed using a series of rectangular bars whose two dimensions represent (i) the bin size and (ii) the histogram value. The histogram value plotted can either be pure counts or a normalized probability density function (PDF).

Figure 23 shows a marginal histogram of counts for liquid water cloud effective particle radius pixels over ocean only for June 2005 as observed by the Aqua MODIS instrument. The bin boundaries are on the x-axis and the height of each bar represents the total L2 pixel counts (sampled) in each bin. The visual discontinuity in counts (vertical bar heights) in Figure 22, starting at the bin boundary of 20 μ m, is due to the change of bin widths (going from 1 μ m to 2 μ m bins).

Figure 23. Marginal Histogram of L2 Pixel Counts (sampled) for Liquid Water Cloud Effective Radius during June 2005 (daytime only) for Global Ocean data from Aqua/MODIS.

Also it should be noted that he first two bins (2-3 and 3-4) contain zero counts due to a Collection 005 change in the L2 cloud optical properties code **not** allowing any effective radii ≤ 4 µm to be computed or stored. In Collection 006, the bottom bin boundary for cloud effective radius in L3 will be adjusted to start at 4.0 µm instead of 2.0 µm.

Users should keep in mind that one can plot "counts" (which is how the data are stored in the L3 HDF file) in each bin; or normalize the data by taking into account the bin sizes and plot "normalized probability" in each bin. This normalized probability calculation is performed as follows:

Normalized Probability = (bin_counts) / (bin_width * total_counts) (4)

Figure 24 shows the same marginal histogram except plotted as a normalized probability density function (PDF). In this plot the double wide bins are taken into account, so the heights

of the vertical bars starting at 20 μ m are half as high as those in Figure 22.

Figure 24. Marginal Histogram of Normalized Probability Density Function (PDF) (sampled) for Liquid Water Cloud Effective Radius during June 2005 (daytime only) for Global Ocean data from Aqua/MODIS.

For a normalized one-dimensional histogram plot, if one calculates the (size of bin) \times (PDF value of bin) then an "area of the rectangle" calculation is actually being performed. When one sums all the rectangle areas, one ends up with the area (or integral) under the 'curve' of 1.0 or 100%.

For example, the peak PDF histogram bin value shown in Figure 23 is 0.076. (This occurs in the tenth bin, which corresponds to 11 μ m < $r_c \le 12 \mu$ m.) This means that 7.6% of the total area of the entire plot fell in this bin. This can also be interpreted as the probability of any one pixel falling in this peak histogram bin is 7.6%. If one performs this calculation for every bin (rectangle), and sums them, one ends up with 1.0 or 100%.

7.5. What is the best way to display joint histogram data?

Common ways to display Joint Histogram data are (i) 3D lego plots, (ii) smoothed contour plots, and (iii) color-coded histogram bin plots.

Lego plots (Figure 25) are easily made in many graphics packages (such as Interactive Data Language, IDL); however it's often difficult to read the exact "height" of each lego block, and some (or most) viewing orientations may cause some blocks to be hidden by larger blocks in front of them.

Figure 25. A June 2005 MYD08_M3 Counts Joint Histogram of cloud optical thickness (y-axis) vs. cloud effective radius (x-axis) for liquid water clouds displayed as a "3D lego plot" with post-processing to limit the data to ocean-only L3 grid cells that range from 45°N to 45°S. The top bin of cloud optical thickness from 50 to 100 was chopped off. The height of each Lego bar represents the number of counts in each bin. It is often difficult to impossible to orient lego plots to make all bins visible.

Smoothed contour plots (Figure 26) are useful as they allow quick visual interpretation of data (without an intimate knowledge of the color bar scale) and therefore lend themselves well to

time-series animations, where the time to view each joint histogram movie frame is short. However smoothing options can be hard to fine tune and the result is always a plot that shows a distorted (smoothed) view of the actual data.

Figure 26. A June 2005 MYD08_M3 Counts Joint Histogram of cloud optical thickness (y-axis) vs. cloud effective radius (x-axis) for liquid water clouds displayed as a "colored contour plot" with postprocessing to limit the data to ocean-only L3 grid cells that range from 45°N to 45°S. The top bin of cloud optical thickness from 50 to 100 was chopped off. The contour colors represent the number of counts in each bin (low is grey, high is red). Contour plots show a distorted (smoothed) view of the data stored in the joint histogram.

The third option, color-coded histogram bin plots (Figure 26), work the best in most cases and have few drawbacks; however some graphics packages cannot produce these plots without expert knowledge of the language and some user programming. The pros of this final method are there is no distortion (smoothing) of data in the x-y plane (as is the case with smoothed contour plots) and all cells (bins) can be viewed without any visual obstruction (as is the case with lego plots). Figures 25, 26, and 27 show identical MODIS L3 joint histogram counts data plotted using these three described techniques.

Figure 27. A June 2005 MYD08_M3 Counts Joint Histogram of cloud optical thickness (y-axis) vs. cloud effective radius (x-axis) for liquid water clouds displayed as a "colored histogram bin plot" with post-processing to limit the data to ocean-only L3 grid cells that range from 45°N to 45°S. The top bin of cloud optical thickness from 50 to 100 was chopped off. The bin colors represent the number of counts in each bin (low is grey, high is red).

For optimal display, it's best to have the graphics package print tick marks and labels at the exact histogram bin boundaries on both axes, so that the bin boundaries and sizes are clear to the viewer. These bin boundaries can be obtained from local attributes attached to each Joint Histogram SDS or from the CDL file specification available on the MODIS Atmosphere web site (modis-atmos.gsfc.nasa.gov). They are also provided in Appendix C for convenience.

Since all L3 joint histograms are stored as 4D arrays (Lat, Lon, Parameter1Bin, Parame-

ter2Bin), MODIS data users can read (and view) a unique joint histogram for every L3 $1^{\circ} \times 1^{\circ}$ grid cell. This allows users to easily perform post-processing to narrow the application of the joint histogram, which is then optimized to show specific scientific results.

Users can apply a latitude/longitude screen to the $1^{\circ} \times 1^{\circ}$ gridded histograms so a newly computed (summed) joint histogram applies to a specified range of latitudes and longitudes only.

Users can also apply land only or ocean only masks when summing individual $1^{\circ} \times 1^{\circ}$ gridded histograms so the newly summed joint histogram applies to land-only or ocean-only regions. (Note that a land/ocean mask for L3 data can be obtained from the MODIS-Atmosphere web site (modis-atmos.gsfc.nasa.gov/MOD08_M3/grids.html).

Users might also sometimes find it advantageous to delete (remove) the highest bin along one or both data axes (which typically have a large data range and few counts) in order to show more detail in other more scientifically relevant bins.

Another item to keep in mind is one can plot "counts" (which is how the data are stored in the L3 HDF file) in each bin; or sometimes it is more useful to normalize the data by taking into account the bin sizes and then plot "normalized probability" in each bin. This normalized probability calculation is performed as follows:

Normalized Probability = (bin_box_counts) / (bin_box_area * total_counts) (5)

Converting the counts to normalized probabilities removes the visual anomalies that occur when comparing bins of different sizes in joint histogram plots. Figure 27 shows how the data in Figure 26 change when going from raw counts to normalized probability, where an adjustment is made for the bin sizes. It's clear that normalizing the data can really change one's perspective of the results.

Finally, some ask, what do the Probability Density Function (PDF) numbers computed for each histogram bin in Figure 28 actually (physically) represent? If a normalized one-dimensional histogram plot means the area under the curve equals one; then a normalized joint histogram PDF plot means the volume under the surface equals one. (The surface being defined as z-axis heights or PDF values in each bin.) If one calculates the (area of bin) x (height of bin) or, alternatively (area of bin) × (PDF value of bin) then a "volume of the block" calculation is actually being performed. When one sums all the block volumes, one ends up with the volume under the surface, which for the normalized JPDF surface is 1.0 or 100%.

Figure 28. A June 2005 MYD08_M3 Normalized Probability Density Function (PDF) Joint Histogram of Cloud Optical Thickness (y-axis) vs. Cloud Effective Radius (x-axis) for Liquid Water Clouds displayed as a "colored histogram bin plot" with post-processing to limit the data to Ocean-only L3 grid cells that range from 45N to 45S. The top bin of Cloud Optical Thickness from 50 to 100 was removed. The bin colors represent the PDF in each bin (low probability is grey, high probability is red).

For example, the peak PDF histogram bin value shown in Figure 27 is 0.005. If you take this number and multiply by the area of the bin $(2.5 \times 2.0 = 5.0)$, one gets a bin (block) volume of 0.025. This means that 2.5% of the total volume under the surface of the entire plot fell in

this bin (block). This can also be interpreted as the probability of any one pixel falling in this peak joint histogram bin box is 2.5%. If one performs this calculation for every bin (block), and sums them, one ends up with 1.0 or 100%.

It should be noted that for the joint histogram in Figure 27, the top bin (50 < Optical Thickness \leq 100) was cut off in order to show (allow) more visual detail in the remaining bins. In order to get the proper summed value of 1.0 (100%), one would need to include this deleted bin in the calculation.

7.6. How should the various multilayer cloud fractions be interpreted?

There are a number of multilayer cloud fractions that use the "Multilayer Cloud and Phase Flag" to compute various cloud fractions.

The Cloud_Fraction_1L_(phase) parameter is computed the same way as the Cloud_Fraction_(phase) parameter, outlined in section 7.1.2, except that it uses the "Primary Cloud Retrieval Multilayer Cloud & Phase Flag" (See MODIS Atmosphere QA Plan) where the flag is set to "single layer cloud." This gives the cloud fraction separated by phase for single layer clouds only.

The Cloud_Fraction_ML_(phase) parameter is computed the same way, except that it uses the "Primary Cloud Retrieval Multilayer Cloud & Phase Flag," where the flag is set to "multilayer cloud." This gives the cloud fraction separated by phase for multi-layer clouds only.

Both of the cloud fraction parameters outlined above are true cloud fractions whose computation includes clear-sky pixel counts in the denominator. Figure 30 (top) shows a sample Cloud Fraction image for single-layer liquid water clouds, and Figure 29 (bottom) shows a sample Cloud Fraction image for multi-layer liquid water clouds. It is typical for the multi-layer liquid water cloud fraction to be less than the single-layer liquid water cloud fraction. When these two fractions are added, it will equal the Cloud_Fraction_Liquid SDS, which depicts the liquid water cloud fraction for all layer clouds.

Finally there are a set of cloud "fractions" that do not include clear-sky pixel counts in the

denominator; that is they are not standard cloud fractions but instead are cloud ratios. SDSs that have the prefix "ML_Fraction_(phase)" show a ratio of multi-layer clouds to all-layer clouds for various cloud phases. In other words, it shows the percentage of clouds that were detected as multi-layer for various cloud phases (cf. Figure 31).

Figure 30. A comparison of a single-layer liquid water cloud fraction with multi-layer liquid water cloud fraction.

Users should be aware that there are SDS name length limits; sometimes an SDS name might not be descriptive enough to determine its content. If at any time MODIS data users need more clarity on what any SDS actually contains, additional documentation as well as computational details can often be obtained from the local attribute "long_name" attached to each SDS. These attributes can also be read from the online version of the file specifications, available from the MODIS-Atmosphere web site (modis-atmos.gsfc.nasa.gov/MOD08_M3/spec_c5.html).
7.7. Is there a minimum L2 pixel count requirement to compute L3 statistics?

Within the L3 Daily product file, for any given $1^{\circ} \times 1^{\circ}$ grid cell, only a single L2 non-fill pixel is needed to create L3 daily statistics. This tends to cause an artificial spatial expansion of sparse L2 data when going to L3. For example, a sizable region might have only a few scattered L2 retrievals, but L3 might show solid coverage of $1^{\circ} \times 1^{\circ}$ statistics.

Figure 31. A depiction of the ratio of multilayer liquid water clouds to all liquid water clouds. In other words, what fraction of liquid water clouds were detected as multi-layer.

MODIS L3 data users have a relatively easy way to monitor the number of L2 pixels that went into L3 statistics for each $1^{\circ} \times 1^{\circ}$ grid cell. Pixel count data are stored within the L3 Daily product file in either the "Pixel_Counts" or the 4th dimension of the "Confidence_Histogram" SDS.

Likewise for the L3 Multiday product files, for any given $1^{\circ} \times 1^{\circ}$ grid cell, only a non-fill daily grid cell for a single day is needed to create L3 multiday statistics.

The only exception to this multiday statistic computation rule is in L3 products derived from L2 Aerosol parameters. The Aerosol group requested a special weighting scheme for L3 Multiday products, where a daily grid cell must have a pixel count of at least 6 to be included in the multiday statistic computation (See Table 4 in Section 4.2.) This was done because the Aerosol group felt that low pixel count daily grid cells were not very reliable and should be thrown out. This screening procedure also helped to reduce the number of low confidence multiday statistic grid cells near the poleward boundary (terminator) of their retrieval algorithm.

7.8. Are statistics within a L3 Daily file a single orbit snapshot or a multiple orbit average?

Two EOS satellites, Terra and Aqua, both carrying the MODIS sensor, are in sunsynchronous orbits. The Terra overpass time is around 1030 local solar time at the equator in its descending (daytime) mode and 2230 local solar time in its ascending (nighttime) mode. The Aqua overpass time is around 1330 local solar time at the equator in ascending (daytime) mode and 0130 local solar time in descending (nighttime) mode.

L3 SDSs within either a Terra or Aqua Daily file are made up of L2 data that are collected for daytime only, nighttime only, or combined daytime and nighttime scenes. Only L3 Daily SDSs that are based on L2 data collected for daytime only or nighttime only scenes, have the chance (depending on global location) to be pinned down to an approximate local solar time. MODIS L3 SDSs that are based on L2 data collected for combined daytime and nighttime scenes are, for most regions of the globe, a mixture of at least two MODIS overpasses approximately 12 hours apart.

To determine if a L3 SDS contains daytime data only, nighttime data only, or combined daytime and nighttime data, one needs to query the local attribute "Included_Nighttime_Data." If this attribute is set to "False," then it's a daytime only parameter (SDS). If this attribute is set to "True," then it's combined daytime and nighttime; unless the string "_Night_" appears somewhere in the SDS name, in which case it's a nighttime only parameter. It should be noted that this last nighttime-only case is of low incidence, only occurring in a few cloud top property derived parameters (see Table 7).

Table 7. Availability of daytime only, nighttime only, or combined daytime and nighttime parameters in L3organized by the "derived from" product group.

Derived from Product	Daytime Only SDSs?	Combined Day & Night SDSs?	Nighttime Only SDSs?
Aerosol 04_L2	Yes	No	No
Water Vapor 05_L2	Yes	Yes*	No
Cirrus Detection 06_L2 (CD)	Yes	No	No
Cloud Top Properties	Yes	Yes	Yes

06_L2 (CT)			
Cloud Optical Prop. 06_L2 (OD)	Yes	No	No
Atmosphere Profile 07_L2	No	Yes	No

* All Combined Day & Night Water Vapor (05_L2) SDSs are copied from Atmosphere Profile (07_L2)

Due to overlapping orbits toward the poles, **only** the daytime only or nighttime only Daily SDSs from approximately 23°N to 23°S can be pinned down to an approximate local solar time (since they are made up of observations from a single MODIS overpass only). Poleward of 23°, L3 Daily data become an average of several overlapping orbits approximately 100 minutes apart (see Figure 32).

Figure 32. A polar view of predicted Terra MODIS orbit tracks for June 20, 2008. The overlapping pattern of orbits in the polar region is clear.

Figure 33 shows the predicted Terra orbit tracks and a Terra L3 image of input (L2) pixel counts for a daytime only parameter for June 20, 2008. The Terra orbit track image shows both

the descending (day) node (white lines that slope from the upper right to lower left portion of the global image) and the ascending (night) node (white lines that slope from the lower right to upper left). The pixel count image shows the typical pattern of single orbit sampling between about 23°S and 23°N. Note that the black color in the pixel count image in Figure 28 shows regions of 0 pixel counts (orbital gap regions between approximately 23°N and 23°S, and polar darkness south of approximately 50°S for this date).

Figure 33. Predicted Terra MODIS orbit tracks (top) and a typical pattern of input pixel counts for a daytime only parameter (bottom) for June 20, 2008. The marked increase in pixel counts towards the pole is due to overlapping orbits causing the L3 data to become a multiple orbit average, over mid-latitudes the pattern of pixel counts is typical for a single orbit snapshot that can be assigned a single (approximate) local solar time.

So in summary, to pin down a L3 Daily SDS to an approximate local solar time, it must be (i) either daytime only or nighttime only and (ii) constrained to L3 grid cells between approximately 23°N and 23°S latitude. Only in both these situations does any Daily SDS contain data from a single MODIS overpass, whose approximate local solar time is given above.

7.9. Can you explain why there are Cloud Fractions from Cloud Mask stored in Level-2 and Level-3, while the other Cloud Top Property Parameters stored in Level-2 and Level-3 within those same grid cells are all Fill (Missing)?

Cloud Top Property SDS's in Level-2 are retrieved in 5x5 km cells. So each grid cell is made up of 25 1x1 km views. The value computed in the 5x5 is the average for the 25 1x1 km regions within the 5x5. If you dump out the 06 L2 SDS Cloud Fraction Day, you will see the full range of possible cloud fraction numbers (in 4% increments, since there are 25 1x1's that make up the 5x5) of: 0%, 4%, 8%, 12%, 16%, 20%, 24%, ..., 92%, 96%, 100%. However only when the Cloud_Fraction is 16% or higher in a given 5x5 km L2 CTP grid cell (that is, at least 4 cloudy 1x1km pixels in the 5x5km (25 pixel) CTP retrieval grid), will there be a Cloud Top Property cloud retrieval performed. So if you find the L2 SDS Cloud Fraction Day values of 0%, 4%, 8%, or 12%, in a particular 5x5 km L2 grid cell, you will find the L2 SDS Cloud_Top_Temperature_Day, Cloud_Top_Pressure_Day, etc, with a FILL VALUE (-9999). So it is possible to have in Level-2 (L2) a valid (non-zero) Cloud Fraction Day (4%, 8%, 12%) and a FILL (-9999) Cloud_Top_Pressure_Day, Cloud_Top_Temperature_Day, etc in the same 5x5 km grid cell. This can cause in Level-3 (L3), in some cases, for some 1x1 degree grid cells, the L3 SDS Cloud_Fraction_Day (for example) having non-fill (valid) 1x1 degree grid values, while the other related Cloud Top Property SDS's, for example Cloud_Top_Pressure_Day, being set to Fill (Missing).

7.10. Why are there fewer Joint Histograms in the multiday Level-3 products (08_E3 and 08_M3) than in the daily Level product (08_D3)?

In the latest Collection 6 PGE version (delivered in October 2014), there were 88 Joint Histograms in the D3 file. A number of these were not propagated to the E3/M3 files due to a

2.0 GB file size limitation in HDF4. The primary reason why the Joint Histograms take up more room in the multiday files is due to the larger counts involved, the multiday Histograms and Joint Histograms had to be stored as Long (4 byte) integers to ensure there would be no integer overflow (and value wrapping) while the daily Histograms and Joint Histograms could be safely stored as Short (2 byte) integers. This doubling of the Histogram sizes pushed the total file size upwards to where a number of Joint Histograms had to be deleted when going from daily (D3) to eight day / monthly (E3 / M3).

So the upshot is, a total of 27 Joint Histograms that are in the Daily L3 (08_D3) were not passed to the Multiday L3 (08_E3 and 08_M3) due to 2 GB uncompressed HDF file size limit in HDF4. There are also 14 scaler SDS's related to Cloud Optical Property (COP) Fractions and 4 marginal Histograms related to COP Phase Counts (Cloudy, Partly Cloudy, and Clear pixel counts) that are only in the D3 and not propagated to E3/M3 due to it not being necessary to have those statistics in the multiday files.

7.11. Why do the Cloud Top Property Daytime parameters extend slightly further poleward than the Cloud Optical Property Daytime parameters?

The difference in the poleward extent of these two groups of parameters can be tracked to their differeing definition of "Daytime" (where COP retrieves and where CTP define "_Day"parameters). For Cloud Optical Properties, COP "Daytime", where retrievals for clouds are made, is arccos (.15) = 81.3731° . So Cloud Optical Properties retrieves when Solar Zenith Angle $\leq 81.3731^{\circ}$. (Sometimes this is simplified in documentation as SZA < 81.4°).

For Cloud Top Properties, CTP "Daytime", where the CTP group retrieves and they append "_Day" to their parameters (SDS's) in L2, is SZA \leq 85.0°. So Cloud Top Properties calls things "_Day" in L2 when Solar Zenith Angle \leq 85.0°.

(Note: If you dump out the Solar_Zenith_Day SDS in L2, which is using the CTP definition of "daytime", you will see packed short integer values of 8500, but never 8501)

The upshot: is COP is 3.6269° more restrictive in the Solar Zenith Angle for retrievals than the "_Day" CTP retrievals. (In other words, CTP extends a bit further into the low sun angle (twilight) regions than COP: 81.3731° vs. 85.0°.

7.12. Can you explain the new "PCL" Cloud Optical Property parameters for Collection6? How many Histograms and Joint Histograms are defined for Cloud Optical Properties?

There are a number of new PCL (Partly Cloudy) Cloud Optical Property parameters in C6, in both the 06_L2 and L3 files. They always have the string "_PCL" in the SDS name. These are slightly less reliable than the regular cloudy retrievals, therefore they were separated into a stand-alone SDS's so that users could decide either to mix them in with the regular retrievals or leave them out.

Listed below are some SDS counts for various Cloud Optical Property parameters

- 1. COP Joint (2D) Histogram Count = 44 Joint Histograms
- 2. COP Marginal (1D) Histogram Count = 44 Marginal Histograms

7.13. How do the Cloud Phase Infrared statistics differ from the Cloud Fraction (from Cloud Mask) statistics? Can they be compared directly?

The Level 2 Cloud_Fraction SDS will have values of 0%, 4%, 8%, 12%, and 16% stored (as well as all increments of 4% from 16% to 100%). Howevever the L2 Cloud_Phase_Infrared SDS will have a value of "Clear" (0) stored if the Fraction is less than 16% So this should make the Fractions from Cloud_Phase_Infrared (which can be post-processed from the L3 Histograms) slightly SMALLER than the fractions from Cloud_Fraction (stored in L3 as a Fraction SDS).

What follows is a bit of additional background information which highlights additional differences between these two Level-2 (and downstream Level-3 "derived from" parameters).

The 06_L2 SDS is called "Cloud_Phase_Infrared" and is stored at a 5km resolution It is calculated in the same main program as the Cloud Top Property SDS's but is a separate process and is in a separate set of subroutines. That means the input radiances (brightness temperatures) are mean values over a 5x5 just as in the CTP process.

The phase is determined from 8.5 - 11 um (band 29 - band 31) differences via a threshold table (in other words, a somewhat simple algorithm). Since that algorithm uses 5×5 km mean values of BTs for the algorithm, only a single result per 5x5 km grid cell is computed.

It should be noted that the 1-km phase algorithm is very different and is more complicated. So the 1-km Cloud Fraction results will not necessarily "look right" when compared to the 5-km Cloud Phase Infared values.

For Cloud Phase Infrared, the three phase designations (liquid water, ice, and undetermined) are computed for an entire 5x5, so "undetermined phase" is determined from a particular range of 8.5-11 um BTDs found in the threshold table.

Users should note that in Collection 5 there was an "mixed" phase as well as an "undetermined" phase (along with the standard "liquid water" and "ice" phases for the Cloud Phase Infrared results.

In Collection 6 the "mixed" designation has been eliminated and now there are only 3 phase results for Cloud Phase Infrared: liquid water, ice, and undetermined phase. This change was implemented because there was too much uncertainty and that it was too difficult to distinguish mixed phase from ice or water.

So in the L2 Cloud_Phase_Infrared SDS, the only valid phase values are 0 (clear), 1 (liquid water), 2 (ice), and 6 (undetermined phase). There will not be any stored values of 3, 4, or 5 in the L2 Cloud_Phase_Infrared SDS. (In C5 the value of 3 represented "mixed" phase).

The IR phase algorithm uses the same criterion for clear vs. cloud as does the CTP - cloudy if 4 out of 25 are cloudy according to the cloud mask. Also the Cloud Phase Infrared does start with the same assumption that to be cloudy, the Cloud Mask must say Confident Cloudy or Probably Cloudy. Both CTP and IR phase require 16% cloudy to report a valid (cloudy) result. In the case of the IR phase, the value reported for "clear" is 0.

7.14. Why are some Histograms and Joint Histograms only available in the Daily (D3) product; and not the Eight Day (E3) and/or Monthly (M3) product?

Up through Collection 6 (so far), the Level-3 HDF proudcts (D3, E3, and M3) are built using HDF4 – and in HDF4 there is a 2GB (uncompressed) HDF file size limitation.

Due to the nature of the actual numbers (counts) stored in the histograms, in the L3 Daily (08_D3) product the counts (numbers) are small enough to be stored as short (2 byte) integers. However in the Eight Day and Monthly HDF product (08_E3 and 08_M3), it was necessary to store those count SDS's as long (4 byte) integers. This contributes to the E3 and M3 HDF files being quite a bit larger (and close to that 2GB file size limitation) than the D3 HDF products. Because of this fact, a number of Histogram and Joint Histogram SDS's could only appear in the D3 HDF file and could not be propagated to the multiday (E3 and M3) products due to a maximum file size limitation.

If users want to study mulitday statistics using these Daily-only Histograms and Joint Histograms, users will need to build their own multiday joint histograms using the Daily SDS's as input. Do do this you simply sum the daily histograms (making sure to avoid (or account for) the Fill Values (-9999)).

The Daily-only Histogram and Joint Histogram SDS's in question are listed in the table shown in Appedix A. The key to finding these Daily-only Histogram and Joint Histogram SDS's is by looking for a small "**D**" in the table grid, instead of the standard dot "•".

7.15 Why are L3 pixel counts for Cloud_Fraction_Day (from Cloud_Mask) sometimes less than the L3 pixel counts for Cloud_Retrieval_Fraction_Combined ?

In July 2020, a data user found a few cases in the Collection 6.1 Daily (D3) product where the L3 pixel counts for Cloud_Fraction_Day were less than the L3 pixel counts for Cloud_Retrieval_Fraction_Combined, something that should never occur given the logical structure of the two source retrieval algorithms.

After an intensive investigation, it was discovered that the MODIS Standard 06_L2 Cloud Top Property Retrieval algorithm was, very intermittently, producing fill (missing) data in regions where the Cloud Mask was valid and defined as cloudy -- meanwhile, in these same very limited regions, the Cloud Optical Property retrieval algorithm was producing valid data.

Due to the fairly large grid size in Level-3 (1x1 degree), it was determined that these small areas of missing Level-2 data did not impact the gridded Level-3 mean (or mean fraction) values (e.g. Cloud_Fraction_Day) -- however, the pixel count values were impacted and pixel count differences are noticeable. This caused, in some very limted regions, the L3 gridded pixel count values for the parameter Cloud_Fraction_Day to be less than the pixel count values for Cloud_Retrieval_Fraction_Combined, which should never occur with bug-free source algorithms. (See Figure 34.)

So to summarize, a code bug in the MODIS Standard 06_L2 Cloud Top Property retrieval algorithm is causing very intermittant missing Cloud Top Property related data and therefore any L3 derived parameters (such as Cloud_Fraction_Day) will show, in very limited spatial regions and temporal periods, fewer pixel counts than corresponding Cloud Optical Property related parameters (such as Cloud_Retrieval_Fraction_Combined). Users should note that the mean (or mean fraction) values are not visibly impacted – this bug only shows itself in the pixel count data. It is expected that this aforementioned Cloud Top Property retrieval algorithm bug will be corrected in Collection 7, with an expected release date in the 2021/2022 timeframe.

Pixel Count Differences: Cloud_Fraction_Day - Cloud_Retrieval_Fraction_Combined

Figure 34. A depiction of the pixel count differences (Cloud_Fraction_Day – Cloud_Retrieval_Fraction_Combined) in the MYD08_D3 file for 1 Feb 2014. The blue color on the image (corresponding to negative difference values) shows regions (Georgia coast and Central Russia) impacted by the Cloud Top Property bug, where intermittent missing values produced lower pixel counts of Cloud_Fraction_Day. It should be noted that the actual mean or mean fraction values did not show any visible impact, only the pixel count statistic showed visible impact.

8.0. High Level Changes between C5 and C6: Information and Imagery

The newest Collection 6 (C6) MODIS data began to be released in 2012 (for some Level-2 products), however other Level-2 products were not released until early 2014. Collection 6 (C6) Level-3 (L3) MODIS data was not released until Fall of 2014.

Offered below is a high level summary of some of the important changes between C5 and C6, which users should be aware of.

The primary over-arching change between C5 and C6, which impacts at least parts of the global data, in every L3 parameter, is the "definition of day" change.

This information was first presented in this guide in Chapter 1, but it's repeated here to emphasize its importance.

8.0.1 Definition of Day change between Collection 5/51 & Collection 6

In Collection 051 and earlier, the Daily L3 product contained statistics computed from a set of L2 MODIS granules (HDF files) that spanned a 24-hour (00:00:00 to 23:59:59 UTC) interval. In the case where a L2 parameter is only computed during the daytime, then only daytime files are read to compute the L3 statistics.

In Collection 006 and later, Daily L3 product contained statistics with "tweaked time stamps" (as much as 3 hours before the start of or 3 hours after the end of a GMT day). This was done so that data gaps and/or data overlap near the "time boundary" (going from one day into the next) are mitigated.

So in Collection 5/51 data, there were often data gaps (data holes) or data overlap (data observed nearly 24 hours apart being mixed together) near the International Date Line.

However, with this update implemented in Collection 6 data, one will rarely

see data gaps near the International Date Line or data observed nearly 24 hours apart being mixed together. This provides a cleaner and clearer day to day boundary in the stored HDF Daily data. It should be noted that this issue in the Daily L3 (D3) has less and less impact as you move to longer time scales, so this issue was less important in the E3 and M3 data.

The Eight-Day L3 product is computed from 8 consecutive Daily L3 product files. The start date for the 8-day interval is always reset to January 1st at the beginning of each calendar year, however the last 8-day interval in each year is allowed to span over the first few days of January. For example, the last eight-day interval for 2005 runs from 12/27/05 to 1/3/06, while the first eight-day interval for 2006 runs from 1/1/06 to 1/8/06. Users should note these days of overlap when evaluating a set of 8-day product files that span several years.

The Monthly L3 product is computed from the complete set of daily files that span a particular month. There are never any days of overlap (like that which exists in the eight-day product at the start of new year).

The use of the hardwired 24-hour (00:00:00 to 23:59:59) UTC time stamp interval to determine a "data day" in Collection 051 and earlier caused 2 troublesome problems. First there was an every other day repeating pattern seen in the L3 Daily (08_D3) data/images. This pattern showed an apparent "data gap" on one day, where there appeared to be missing granules or sometimes a missing orbit near the International Date Line. Then on the subsequent day there was "data overlap", where the "missing" granules from the previous day were mixed in with the granules from the new day – effectively combining data observed nearly 24 hours apart to be averaged together. This can be seen in Figure 1 below. Figure 2 shows the same two days of data, except using Collection 6 data, which had the new C6 "Definition of Day" update applied – effectively repairing (eliminating) the problem.

Figure 8.1. Two consecutive days of Collection 51 MODIS data showing the orbital gap, then orbital overlap problem. This pattern repeats every 2 days – and was caused by using a fixed 0000-2400 UTC definition of "Day".

Figure 8.2. The same two consecutive days of data shown in Figure 1 except this time depicting Collection 6 (C6) MODIS data, showing the data gap and overlap problem (that was found in C5/C51 and earlier Collections) repaired by the new C6 "Definition of Day" update.

8.1. Solar and Sensor Zenith and Azimuth Angles

Users of Collection 6 (C6) Level-3 data should note there was a change in the domain of the Solar and Sensor, Zenith and Azimuth angle SDS's.

In Collection 5, if any part of a L2 granule was sunlit, then that entire granule was used to build these Angle SDS's. This caused some of the data to reflect sun angles below the horizon and caused the domain of valid (non-missing) data to

extend more poleward than it should have.

In Collection 6, a change was made to use the Cloud Top Properties definition of "daytime" (Solar Zenith Angle $\leq 85^{\circ}$) to compute these Angle SDS's.

A comparison between C5 and C6 of the L3 SDS Solar_Zenith_Mean is shown below.

Figure 8.3 A comparison of the SDS Solar_Zenith_Mean from Collection 5 (top image) Collection 6 (bottom image). The new Collection 6 image uses the Cloud Top Properties definition of daytime (SZA < 85°), which provides more useful data, especially when comparing to Cloud Top or Cloud Optical Property parameters.

8.2. Aerosol High Level Changes

C6 Aerosol Data Users need to be aware there were considerable changes made in the naming of Aerosol parameters in C6. A detailed Aerosol-derived parameter mapping table, showing the changes between Collection 5 and Collection 6 is given in Appendix D at the end of this Guide. In addition to parameters that were renamed – also provided is a list of C5 Aerosol parameters that were dropped in C6.

8.2.1. Aerosol Optical Depth Land and Ocean

The changes between C5 and C6 Aerosol Optical Depth Land and Ocean are more subtle, however there is a slight extension of the domain of data in C6 (so there is slightly less missing data.

Figure 8.4 Aersol Optical Depth Land and Ocean -- C5 data (top) vs. C6 data (bottom). Changes between the old and new Collection are more subtle, but there is less missing data in C6 -- and for most regions there was a slight reduction in the computed value.

8.2.2. Aerosol Optical Depth Land (only)

The changes between C5 and C6 Aerosol Optical Depth Land are minor, values are similar but more domain (less missing) with C6

Figure 8.5 Aerosol Optical Depth Land comparison between C5 and C6. Changes are subtle.

8.2.3. Aerosol Optical Depth Ocean (only)

The changes between C5 and C6 Aerosol Optical Depth Land and Ocean are subtle, values are similar but there is more domain (more coverage) with C6.

Figure 8.6 Aerosol Optical Depth Average Ocean comparison between C5 and C6.

8.2.4. Deep Blue Aerosol Optical Depth Land (only)

The changes between C5 and C6 are again, more domain with a slight drop in values.

Figure 8.7 Deep Blue Aerosol Optical Depth Land comparison between C5 and C6.

8.2.5. Combined Dark Target + Deep Blue Aerosol Optical Depth

One of the major improvements for C6 Aersol is a "super combined" Aerosol Optical Depth SDS. In C6, there is a"Combined" Deep Blue + Dark Target Aerosol Optical Depth (AOD) at 0.550 microns

Figure 8.8 Aerosol Optical Depth images for C6. The component parts shown in the first 3 images above; and the new "Combined" SDS shown at bottom.

8.3. Water Vapor NIR (Clear Sky Land and Sunglint Ocean)

There was little change in Water Vapor Near Infared (NIR), however the Definition of Day change is noticeable around the International Date Line.

Figure 8.9 Water Vapor NIR comparison between C5 and C6 highlighting the Definition of Day improvement in C6.

8.4. Cloud Top Temperature Day

One of the more interesting changes in C6 was a sub setting of some of the Cloud Top Property Parameters into "Near Nadir" SDSs. Near Nadir is defined as Senor Zenith Angle \Box 32° (so it's roughly the "inner half" of the scan). Reducing the scan angles improves the certainty and reduces errors in the algorithm providing better estimates of the various Cloud Top Property parameters computed.

Figure 8.10 Cloud Top Temperature Day comparison between C5 (top image) and C6 (middle image). The values of CTT had a substantial decrease in some regions (esp. towards higher latitudes). The bottom image in the figure shows the Near Nadir (SZA < 32 degrees) subset, which provides for more accurate estimates (less error).

One of the important questions to investigate is did using a near nadir subset to create daily (D3) images, make a different in the monthly (M3) images. To answer that question, see the Figure below.

Figure 8.11 Monthly Images of Cloud Top Temperature Day: Full Scan (top image) vs. Near Nadir (bottom image). The Near Nadir subset produced more variation (higher highs and lower lows) and more detail in general, the full scan image looked more smoothed / averaged.

8.5. New Surface Type Parameters

There are new surface type parameters in C6. These parameters are computed in the successful retrieval space for the Cloud Top Properties Algorithm. Some sample new Surface Type SDS's are shown below.

Figure 8.12 A sampling of new Surface Type Parameters available in C6. Surface types are calculated only in 5x5 km retrieval areas that were cloudy and successful.

8.6. Cloud Optical Thickness (Regular Cloudy Retrieval vs. Partly Cloudy Retrieval)

Another new addition in C6 was a new separate SDS for Partly Cloudy (PCL) retrievals. These new PCL retrievals and SDS's are generally of lower quality (with higher uncertainty) than regular fully cloudy retrievals.

Figure 8.13 Top image is the old C5 retrieval of Liquid Water Cloud Optical Thickness, middle image is the new C6 retrieval of the same LWCloud Optical Thickness; bottom image is the new C6 Partly Cloudy (PCL) retireval. The values of Tau are generally lower than the regular fully cloudy retrieval, and the uncertainties are higher.

8.7. Cloud Optical Thickness (Regular Cloudy Retrieval) -- Comparison of Primary 2.1 micron retrieval and supplemental 3.7, 1.6, and 1.6/2.1 retrievals.

Some users might be confused on which Cloud Optical Property retrieval is the "most correct". Since 4 unique retrieval algorithms are offered. The answer is they all have various strengths and weaknesses. When Gala Wind, the Cloud Optical Properties researcher and programer, was asked that question, she noted that "it depended on which instrument you might want to compare it to" – meaning that if you were looking for differences between MODIS and another instrument. You should probably choose the MODIS retrieval that most closely matched the bands being used to retrieve Cloud Optical Properties in that other instrument.

All things being equal, we generally suggest that MODIS data users at least start out with the Primary 2.1 micron retrieval.

Figure 8.14 shows a comparison of Liquid Water Cloud Optical Thickness for a particular day using each of the four available retrievals. It's interesting to note that for this day at least, 3 of the retrievals gave answers that were fairly close to one another. And the outlier was the supplemental 1.6/2.1 retrieval that produced Cloud Optical Thickness values that were quite a bit smaller than the other retrievals.

Figure 8.14 Top image is the new C6 primary 2.1 micron retrieval of the Liquid Water Cloud Optical Thickness. Second image is the supplemental 3.7 micron retrieval. Third image is the supplemental 1.6 micron retrieval. Bottom image is the supplemental 1.6/2.1 retrieval.

8.8. New Definitions of "Low" and "High" in the Atmospheric Water Vapor SDS's

A final change between C5 and C6 was a redefining of the layers earmarked as "Low" and "High".

For Low: In the older C5 data, Low was defined as Surface to 920 mb. While in the new C6 data, Low is defined as Surface to 680 mb.

For High: In the older C5 data, High was defined as 700 mb to 300 mb. While in the new C6 data, High is defined as 440 mb to 10 mb.

You can clearly see in Figure 8.15 changing the thickness and locations of those defined layers made a big difference in the values. So users should be careful not directly compare these parameters between C5/51 and C6 – one would be comparing apples to oranges in that case.

Figure 8.15 Top image is the old C5 Atmospheric Water Vapor Low with "Low" defined as Surface to 920 mb. Bottom image that same parameter for C6, with "Low" redefined as Surface to 680 mb. Clearly this makes a huge difference in the values between C5 and C6.
9.0. References

- Oreopoulos, L., 2005: The impact of subsampling on MODIS Level-3 statistics of cloud optical thickness and effective radius. *IEEE Trans. Geosci. Remote Sens.*, **43**, 366–373.
- Oreopoulos, L., R. Cahalan, and S. Platnick, 2007: The plane-parallel albedo bias of liquid clouds from MODIS observations. *J. Climate*, **20**, 5114–5125.

Appendix A:

Scientific Data Sets found in the L3 Products

L3 SDS Statis Collection	ti	C 6 1	I Up	n da	Ve ate	9 r i 9	It	0	ry											
= Added = Renamed] =	De	elet	ed				= 1	40	dif	ied								
Exarche Observing System MODIS Atmosphere Level-3 Daily Product Product Parameter Solar and Soncer Angles	Mean	Standard Deviation	Minimum	Maximum	QA_Mean	QA_Standard_Deviation	Histogram_Counts (n)	Confidence_Histogram (4)	(Fraction)	Pixel Counts	Mean Uncertainty	Log Mean Uncertainty	Log Standard Deviation	JHisto_vs_Opt_Depth (nxn)	JHisto_vs_Eff_Radius (nxn)	JHisto_vs_Eff_Radius_16 (nxn)	JHisto vs Eff Radius 37 (nxn)	JHisto vs Temperature (nxn)	JHisto vs Emissivity (nxn)	JHisto_vs_Pressure (nxn)
Solar and Sensor Angles																				_
01 Solar Zenith [using CTP definition of doutings S74 < 95%]																	Т	Т	Т	٦
O2. Solar Azimuth [using CTP definition of daytime: SZA < 85°]	•	•	•	•					_	•			-				-	_	+	_
03. Sensor Zenith [using CTP definition of daytime: SZA ≤ 85°]	•	•	•	•						•							-			
04. Sensor_Azimuth [using CTP definition of daytime: SZA ≤ 85°]	•	•	•	•						•										
Derived from L2 Aerosol (04_L2)																				
Combined Land & Ocean	1	_						,		-		-	-							
01. Aerosol_Scattering_Angle	•	•	•	•			•	\square		•			_	\square			\dashv	+	\downarrow	
02. Aerosol_Optical_Depth_Land_Ocean	•	•	•	•			•			•			-				\downarrow	+	\perp	4
U3. Aerosol_Avg_Cloud_Distance_Land_Ocean	•	•	•	•						•										
01 Acrosol Optical Dopth Land (2) [required Compted]																		<u> </u>		
02 Aerosol Number Divels Used Land (2) to (10)		•	•	•	•	-	•	•	_						_		\rightarrow		_	-
	•	•	•			•	•													
Ocean Only																				
01. Aerosol_Optical_Depth_Average_Ocean (7) [prev Eff.]	•	•	•	•	•	•	•	•												
02. Aerosol_Optical_Depth_Small_Ocean	•	•	•	•	•	•	•	•												
03. Aerosol_PSML003_Ocean [prev. CCN_Ocean]	•	•	•	•	•	•	•	•									\square		_	
04. Aerosol_Optical_Depth_by_models_Ocean (9)	•	•	•	•	•	•		•									\square	\rightarrow	_	_
05. Aerosol_Number_Pixels_Used_Ocean (1) to (10)	•	•	•	•	•	•	•						-				\downarrow	+	\perp	4
Ub. Aerosol_AE1_Ocean (8x9)								-	-	_			-	•		+	\dashv	-	+	4
U7. Aerosol_AE2_Ocean (8x9)	_							-	-	+		+	-	•		-	\dashv	+	+	4
US. Aerosoi_UD_Katio_Small_Ucean (5x9)														•						

Rearch Observing System MODIS Atmosphere Level-3 Daily Produce PARAMETER	Mean	Standard Deviation	Minimum	Maximum	QA_Mean	QA_Standard_Deviation	Histogram_Counts (n)	Confidence_Histogram (4)	(Fraction)	Pixel_Counts	Mean_Uncertainty	Log_Mean_Uncertainty	Log_Mean	Log_Standard_Deviation	JHisto_vs_Opt_Depth (nxn)	JHisto_vs_Eff_Radius (nxn)	JHisto_vs_Eff_Radius_16 (nxn)	JHisto vs Eff Radius 37 (nxn)	JHisto vs Temperature (nxn)	JHisto vs Emissivity (nxn)	JHisto vs Pressure (nxn)
Deep Blue Aerosol (No QA SDS's but still QAMasked)				1	1																
01. Deep_Blue_Aerosol_Optical_Depth_Land	•	•	•	•			•														
02. Deep_Blue_Aerosol_Optical_Depth_550_Land	•	٠	٠	•			•														
03. Deep_Blue_Angstrom_Exponent_Land	•	٠	•	•			•														
04. Deep_Blue_Single_Scattering_Albedo_Land (3)	•	•	•	•			•														
05. Deep_Blue_Number_Pixels_Used_550_Land	•	٠	٠	٠			•														
06. AOD_550_Dark_Target_Deep_Blue_Combined	•	٠	٠	•			•														

Derived from L2 Water Vapor (05_L2)

01. Water_Vapor_Near_Infrared_Clear	•	•	•	•		•								
02. Water_Vapor_Near_Infrared_Cloud	•	•	•	٠		•								
Derived from L2 Cloud (06_L2)														
Cirrus Detection														
01. Cirrus_Reflectance	•	•	•	٠		•								
02. Cirrus_Fraction_SWIR							•	•						
Cloud Top Properties [Nadir:SensorZA<32° Day:SolarZA<85°]														
01. Cloud_Top_Pressure [L/M/H Histograms at 10 intervals]	•	•	٠	٠		•		•					•	
02. Cloud_Top_Pressure_Day [``]	•	•	٠	٠		•		•					•	
03. Cloud_Top_Pressure_Night ["]	•	•	•	•		•		•					•	
04. Cloud_Top_Pressure_Nadir [L/M/H Histograms at 10 intervals]	•	•	•	٠		•		•						
05. Cloud_Top_Pressure_Nadir_Day ["]	•	•	•	•		•		•						
06. Cloud_Top_Pressure_Nadir_Night ["]	•	•	•	٠		•		•						
07. Cloud_Top_Temperature [L/M/H JHisto 20x3]	•	•	٠	٠				•						•
08. Cloud_Top_Temperature_Day [L/M/H JHisto 20x3]	•	•	•	•				•						•
09. Cloud_Top_Temperature_Night [L/M/H JHisto 20x3]	•	•	•	•				•						•

Earth Observing System																				
MODIC Attended																				
MODIS Almosphere																				
Level-3 Daily Product															(ux	с х	X			NXN
															L L	<u>د</u>	5 5	35		(r
						-		(4)						c			9 1			
						tior	(լ	Ε				Ę		<u></u>	Ч	S	s			
		on				viat	S (1	gra				a.	-	NI2	ept	<u></u>		ulu rat	vity	e
		ati				De	Int	sto			F	E L	Ċ	الق	ŏ	Ra I	x Z		Ssiv	ssu
Ĕ		evi				p	<u>S</u>	Ξ		S	E .	ŭ		2	pt.	ŧ١	٤ð	e l	j iu	re
SE SE			_	c	_	dar	Ε	e		n	ē	2	c 1	g	s S	ы С	ы П		. ш о	S P
		ard	m	unu	ear	an	La	en	<u>io</u>	Ō	5	ea	ea	tar	ž	ž	× i	Š	Ĭ	Ň
PARAMETER	an	pu	nim	xin	Σ	ร	tog	lid	act	o	a'	2	2 (<u>ר</u>	sto	sto	Sto 1		sto	sto
• -	Me	Sta	Mir	Ma	QA	QA	His	Co	Ë	ЫX	Ŭ.	Š	Po Po	Š	H	E :				JHI
10. Cloud_Top_Temperature _Nadir [L/M/H JHisto 20x3]	•	•	•	•						•										•
11. Cloud_Top_Temperature _Nadir_Day [*]	•	•	•	•						•										•
12. Cloud_Top_Temperature _Nadir_Night [*]	•	•	•	•						•										•
13. Cloud_Effective_Emissivity [L/M/H JHisto 11x10]	•	•	٠	•						•										•
14. Cloud_Effective_Emissivity_Day [1]	•	•	•	•						•										•
15. Cloud_Effective_Emissivity_Night ["]	•	•	•	•						•										•
16. Cloud_Effective_Emissivity _Nadir [L/M/H JHisto 11x10]	•	•	•	•						•									\perp	•
17. Cloud_Effective_Emissivity _Nadir_Day ["]	•	•	٠	•						•									_	٠
18. Cloud_Effective_Emissivity _Nadir_Night [*]	٠	٠	٠	•					_	•					_			_	<u> </u>	٠
19. Cloud_Fraction [L/M/H JHisto 12x10]	•	•	٠	•						•			_					_	–	٠
20. Cloud_Fraction_Day [1]	•	•	٠	•						•					_			_	+	•
21. Cloud_Fraction_Night ["]	•	•	•	•				_	_	•	_	_	_	_	_	_	_	+	+	•
22. Cloud_Fraction_Nadir [L/M/H JHisto 12x10]	•	•	•	•				_	-		_		_		+	+	+	+	+	•
24 Cloud Fraction Nadir Night	•	•	•	•											_			_	+	•
25. Cloud Top Height [1/M/H]Histo 18x3]	•	•	•	•											+	+		+		•
26. Cloud Top Height Day [*]	•	•	•	•														+	-	•
27. Cloud_Top_Height_Night [1]	•	•	•	•														1	-	•
28. Cloud_Top_Height _Nadir [L/M/H JHisto 18x3]	•	•	•	•						•									1	•
29. Cloud_Top_Height _Nadir_Day ["]	•	•	•	•						•								T	T	•
30. Cloud_Top_Height _Nadir_Night ["]	•	•	•	•						•										•
31. Cirrus_Fraction_Infrared [denom. includes clear sky in C6]									•	•										
32. High_Cloud_Fraction_Infrared [denom. includes clear]									•	•										
33. Cloud_Phase_Infrared							•													
34. Cloud_Phase_Infrared_Day							•											D		٠
35. Cloud_Phase_Infrared_Night							•			\downarrow		\downarrow						D	Ļ	•
36. Cloud_Top_Pressure_1km_Nadir_Day [sample vs. avg.]						$\left \right $		-	-	\downarrow		\downarrow			+	+	+	\downarrow	\vdash	•
37. Cloud_Top_Pressure_1km_Nadir_Night [sample vs. avg.]											_		-+	-	+	+	+	_	+	•
38. Sunglint_Fraction_Day [daytime only phenomenon]						\square	_	_	•	•	+	+	+	+	+	+	-	+	+	⊢
39. Snow_Fraction_Spectral_Under_Thin_Clouds_Day						\square		-	•	•	_		-+	-	+	+	+	+	+	\vdash
40. Snow_Fraction_Ancillary_Under_All_Clouds_Night									•											

Earth Observing System																					
MODIC Athen have																					
MODIS Atmosphere																					
Level-3 Daily Product															(ux	(ux	x N	xn)	N	UX1	IXU
															u)	Ű)	-	-	5	5)
						_		(4)						L			9	23			
						tior	(۲	Ε				Ity		Itio	h	S	S	S	ure		
		n				viat	S (r	gra				tair		via	ept	diu	diu	diu	rat	vity	อ
		atio				De	Int	ŝ			u	l		De	ŏ	Ra	Ra	Ra	be	SSiv	ssu
Ĕ		evi				P	Col	Ξ		S	<u>ta</u>	Jnc		p	pt.	ff	£	£	em	Ë	res
2		Ō		-		dar	E	8	~	unt	<mark>0</mark>		c	da						Ш	L L
		ard	E H	nu	ean	anc	rar	en	o	00	5	ea	ea	tan	ž	Š	Š	ž	Š	ž	Š
PARAMETER	u	pu	in a	kim	ž	Š	tog	nfid	act	e	ц В	Σ	2	S	sto	sto	sto	sto	sto	sto	sto
• •	Me	Sta	Mir	Ma	QA	QA	His	S	Ë	Pix	Μ		Log	Log	JН	ЭНІ	ΪH	ΪH	ΪH	ΪH	JHI
41. Ocean_Fraction_Day						_		_	•	•					-	-		_		_	
42. Ocean_Fraction_Night									•	•											
43. Coast_Fraction_Day									•	•											
44. Coast_Fraction_Night									•	•											
45. Desert_Fraction_Day									•	•											
46. Desert_Fraction_Night									•	•											
47. Land_Fraction_Day									•	•											
48. Land_Fraction_Night									•	•											
Cloud Optical Properties [PCL:Partly Cloudy Day:SolarZA≤81.3731°]																					
(<i>Primary 2.1 Retrieval</i>) D = SDS in D3 only (not in E3/M3)	1								-												
01. Cloud_Optical_Thickness_Liquid	•	•	•	•			•				•	•	•	•		•		\vdash	•	_	•
02. Cloud_Optical_Inickness_Ice	•	•	•	•			•		_		•	•	•	•		•		\vdash	•	D	•
03. Cloud_Optical_Inickness_Ondetermined	•	•	•	•									•	•				\vdash	_		_
04. cloud_Optical_Inickness_Combined	•	•	•	•					_				•	•				\vdash	_	_	
06. Cloud Optical Thickness PCL Ice		•	•	•			•				•					•		\vdash	_		
07. Cloud Optical Thickness PCL Undetermined	•	•	•	•			-				-							\vdash	_		
08. Cloud Optical Thickness PCL Combined	•	•	•	•															_		
09. Cloud_Optical_Thickness_ISCCP ⁸																					•
10. Cloud_Optical_Thickness_PCL_ISCCP ⁸																					•
11. Cloud_Effective_Radius_Liquid	•	•	•	•			•				•								•		D
12. Cloud_Effective_Radius_Ice	•	•	•	•			•				•								•		D
13. Cloud_Effective_Radius_Undetermined	•	•	•	•																	
15. Cloud_Effective_Radius_PCL_Liquid	•	•	•	•			D				•										
16. Cloud_Effective_Radius_PCL_Ice	•	•	•	•			D				•										
17. Cloud_Effective_Radius_PCL_Undetermined	•	٠	٠	•														Ц	\square		
18. Cloud_Water_Path_Liquid	•	•	•	٠			•				•										
19. Cloud_Water_Path_Ice	•	•	•	٠			•		_		•							\vdash	$ \rightarrow $		
20. Cloud_Water_Path_Undetermined	•	•	•	•					_									\vdash	$ \rightarrow$		
22. Cloud_Water_Path_PCL_Liquid	•	•	•	•			•		-		•							\vdash	\dashv	\square	
23. Cloud_Water_Path_PCL_Ice	•	•	•	•			•				•										

Korth Observing System MODIS Atmosphere Level-3 Daily Product														(nxn)	(nxn)	(nxn)	(nxn)	(uxu)	(uxu)	(uxu)
PARAMETER	Mean	Standard_Deviation	Minimum	Maximum	QA_Mean	QA Standard Deviation	Histogram_Counts (n)	Confidence_Histogram (4)	(Fraction)	Mone Lounts	Log Maan Uncertainty	Log Mean	Log_Standard_Deviation	JHisto_vs_Opt_Depth	JHisto vs Eff Radius	JHisto vs Eff Radius 16	JHisto vs Eff Radius 37	JHisto vs Temperature	<u>JHisto_vs_Emissivity</u>	JHisto vs Pressure
24. Cloud_Water_Path_PCL_Undetermined	•	•	•	•																
25. Cloud_Phase_Optical_Properties [L, I, U][Cld+PCL][S+F]																		•		
26. COP_Phase_Cloudy [3 cats: Liq, Ice, Undet] CSR=0 [Succ+Fail]							D													
27. COP_Phase_Partly_Cloudy [Liq, Ice, Undet] CSR=1,3 [S+F]							D													
28. COP_Phase_CloudMaskClear [Cloud Mask Clear] CSR=0							D													
29. COP_Phase_RestoredToClear [Restored To Clear] CSR=2							D													

(Primary Successful Cloud Retrieval Fraction)													
30. Cloud_Retrieval_Fraction_Liquid [denom. incl. fail in C6]							• •						
31. Cloud_Retrieval_Fraction_Ice [denom. incl. fail in C6]							•						
32. Cloud_Retrieval_Fraction_Undetermined ["]							•						
33. Cloud_Retrieval_Fraction_Combined ["]							•						
34. Cloud_Retrieval_Fraction_PCL_Liquid ["]							•						
35. Cloud_Retrieval_Fraction_PCL_Ice ["]							•						
36. Cloud_Retrieval_Fraction_PCL_Undetermined ["]							•						
37. Cloud_Retrieval_Fraction_PCL_Combined ["]							• •						
(Primary Retrieval Single-Layer Clouds only)													
01. Cloud_Optical_Thickness_1L_Liquid ⁴	•	•	•	•		•		•		D			
02. Cloud_Optical_Thickness_1L_Ice ⁵	•	•	•	•		•		•		D			D
03. Cloud_Effective_Radius_1L_Liquid	•	•	•	•		•		•					
04. Cloud_Effective_Radius_1L_Ice	•	•	•	•		•		•					
05. Cloud_Water_Path_1L_Liquid	•	•	•	•		•		•					
06. Cloud_Water_Path_1L_Ice	•	•	•	•		•		•					
07. Cloud_Phase_Optical_Properties1L			-									D	
(Single-Layer Cloud Fraction)		_					 				 		
08. Cloud_Retrieval_Fraction_1L_Liquid [denom. incl. fail]			-				• •						
09. Cloud_Retrieval_Fraction_1L_Ice [denom. incl. fail]			-				• •						
(Multi-Layer Cloud Fraction)							 	-			 		
01. Cloud_Retrieval_Fraction_ML_Liquid [denom. incl. fail]							• •						
02. Cloud_Retrieval_Fraction_ML_Ice [denom. incl. fail]							• •						
03. Cloud_Retrieval_Fraction_ML_Undetermined ["]							•						

Rearth Observing System MODIS Atmosphere Level-3 Daily Product	ue	ndard_Deviation	imum	cimum	Mean	Standard_Deviation	togram_Counts (n)	ifidence_Histogram (4)	action)	el_Counts	an_Uncertainty	_Mean_Uncertainty	Mean		sto_vs_Opt_Depth (nxn)	sto_vs_Eff_Radius (nxn)	sto_vs_Eff_Radius_16 (nxn)	sto_vs_Eff_Radius_37 (nxn)	sto_vs_Temperature (nxn)	sto_vs_Emissivity (nxn)	sto_vs_Pressure (nxn)
+ -	Me	Sta	Min	May	QA.	QA	His	Cor	(Fr	Pix	Meä	Log	Log	Log	jΗi	JHi	ĴHÏ	JHI	JHi	JHi	JHI
04. Cloud_Retrieval_Fraction_ML_Combined ["]									•	•											
(Ratio of Multi-Layer Clouds to All-Layer Clouds by Phase)		1																			
05. ML_Ratio_Liquid [prev. Fraction]									•	•								┢──┥			
06. ML_Ratio_Ice [prev. Fraction]									•	•								┝──┥			
07. ML_Ratio_Undetermined [prev. Fraction]									•	•								⊢			
08. ML_Ratio_Combind [prev. Fraction]									•	•											
(Supplementary 1.6/2.1 Retrieval) vs. Re1621	Т																				
01. Cloud_Optical_Thickness_1621_Liquid ⁶	•	•	•	•			•				•					•					
02. Cloud_Optical_Inickness_1621_Ice	•	•	•	•			•				•					•	_				
03. Cloud_Effective_Radius_1621_Liquid	•	•	•	•			•				•						_				
04. Cloud_Effective_Radius_1621_Ice	-	•	•	•			•				•						_		_	_	
05. Cloud_Water_Path_1621_Liquid	-	•	•	•			•				•						_		_	_	
07 Cloud Patriaval Fraction 1621 Liquid (deceminal fail)	-	•	•	•			•				•						_				
08 Cloud Patriaval Fraction 1621 Ice Identified fail									-	•							_		_	_	
09 Cloud Optical Thickness 1621 PCL Liquid ⁶		•	•	•			•		-	•	•						_				
10 Cloud Optical Thickness 1621 PCL_Liquid		•	•	•			•				•					•	_		_	_	
11 Cloud Effective Radius 1621 PCL Liquid		•	•	•			•				•					-	_		_	_	
12. Cloud Effective Radius 1621 PCL Ice	•	•	•	•			•				•						-				
13. Cloud Water Path 1621 PCL Liquid	•	•	•	•			•				•						-				
14. Cloud Water Path 1621 PCL Ice	•	•	•	•			•				•						_				
15. Cloud_Retrieval_Fraction_1621_PCL_Liquid									•	•						_	-				
16. Cloud_Retrieval_Fraction_1621_PCL_Ice									•	•											
(Supplementary 1.6 Retrieval)																I					
01. Cloud_Optical_Thickness_16_Liquid	•	•	•	•			D				•						D				
02. Cloud_Optical_Thickness_16_Ice	•	•	•	•			D				•						D				
03. Cloud_Effective_Radius_16_Liquid	•	•	•	•			•				•					•		D	D		
04. Cloud_Effective_Radius_16_Ice	•	•	•	•			•				•					•		D	D		
05. Cloud_Water_Path_16_Liquid	•	•	•	•			•				•										
06. Cloud_Water_Path_16_Ice	•	•	•	•			•				•										
07. Cloud_Retrieval_Fraction_16_Liquid									•	•											

														(uxu)	(uxu)	(uxu)	(uxu)	(uxu)	(uxu)	(uxu)
Mean	Standard Deviation	Minimum	Maximum	QA_Mean	QA_Standard_Deviation	Histogram_Counts (n)	Confidence_Histogram (4)	(Fraction)	Pixel_Counts	Mean_Uncertainty	Log_Mean_Uncertainty	Log_Mean	Log_Standard_Deviation	JHisto_vs_Opt_Depth	JHisto<u>vs</u>Eff_Radius	JHisto vs Eff Radius 16	JHisto vs Eff Radius 37	JHisto vs Temperature	JHisto vs Emissivity	JHisto_vs_Pressure
								•	•											
•	•	٠	٠			D				•						D				
•	•	٠	٠			D				•						D				
•	•	٠	٠			٠				•					٠		D	D		
•	•	٠	٠			٠				•					•		D	D		
•	•	٠	٠			٠				•										
•	•	٠	٠			•				•								$ \rightarrow $	$ \rightarrow $	
								•	•											
								•	•											
	1						-											r		
•	•	•	•			D				•							D			
•	•	•	•			D				•							D			
•	•	•	•			•				•					•			D		
•	•	•	•			•				•					•			D		
•	•	•	•			•				•										
•	•	•	•			•				•										
								•	•											
								•	•											
•	•	•	•			D				•							D			
•	•	•	•			D				•							D			
•	•	•	•			•				•					•			D		
•	•	•	•			•				•					•			D		
•	•	•	•			•				•										
•	•	•	•			•				•										
								•	•											
		• •	• •	• •	0 0	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •

Derived from L2 Atm Profile (07_L2)

[Note: Low (Sfc-680 hPa) & High (440-10 hPa) def'n changed from C51 to C6]															
01. Total_Ozone	٠	•	•	•	•	•	•	•							
02. Total_Totals	٠	•	٠	•	•	•	•	•							
03. Lifted_Index	٠	•	٠	•	•	•	•	•							

Reartile Oloser vineg System MODIS Atmosphere Level-3 Daily Produce	Mean	Standard_Deviation	Minimum	Maximum	QA_Mean	QA_Standard_Deviation	Histogram_Counts (n)	Confidence_Histogram (4)	(Fraction)	Pixel_Counts	Mean_Uncertainty	Log_Mean_Uncertainty	Log_Mean	Log_Standard_Deviation	JHisto_vs_Opt_Depth (nxn)	JHisto_vs_Eff_Radius (nxn)	JHisto_vs_Eff_Radius_16 (nxn)	JHisto_vs_Eff_Radius_37 (nxn)	JHisto_vs_Temperature (nxn)	JHisto_vs_Emissivity (nxn)	JHisto_vs_Pressure (nxn)
04. Atmospheric_Water_Vapor	•	٠	•	•	•	•	•	•													
05. Atmospheric_Water_Vapor_Low [C6 "Low" = Sfc-680mb]	•	•	•	•	•	•	•	•													
06. Atmospheric_Water_Vapor_High [C6 "High" = 440-10mb]	•	•	•	•	•	•	•	•													
07. Retrieved_Temperature_Profile	•	•	•	•						•											

 \mathbf{D} = SDS in D3 only (not in E3/M3). A total of 19 Joint Histograms were deleted going from D3 to E3/M3 due to 2 GB uncompressed HDF file size limit in HDF4. In the PGE56:v6.1.7 delivery a total of 8 new JH's were added to D3 only. So from that point forward, there are 27 D3 JH's which do not propagate into E3/M3. There are also 3 new Histogram SDS's in D3 related to COP_Phase that also will not propagate to E3/M3 starting in PGE56:v6.1.9.

Note that all "_Joint_Histogram_" SDS names were changed to "_JHisto_" in C006 in TL, D3, E3, & M3. This was done to stay within the 63 character legal SDS name length limit in HDF4. The longest statistic suffix name in L3 is 28 characters. Therefore, the longest parameter prefix name should be held to 35 characters or less to be "safe"; however some parameters can be up to 39 characters if you are careful about what statistics you attempt to compute and what statistic suffix's you attempt to append.

- ⁴ Joint Histogram with Cloud_Effective_Radius_1L_Liquid
- ⁵ Joint Histogram with Cloud_Effective_Radius_1L_Ice
- ⁶ Joint Histogram with Cloud_Effective_Radius_1621_Liquid
- ⁷ Joint Histogram with Cloud_Effective_Radius_1621_Ice
- ⁸ Joint Histogram uses ISCCP-like bin boundaries

Note the JH's highlighted in Blue in the table in Appendix A are "jointed against" Re 1621 (So those JH's are: Tau1621 vs. Re1621)

There was not enough room in the SDS name to use "JHisto_vs_Eff_Radius_1621" in the Suffix Name with the long prefix name since there is a hard character limit of SDS names.

In the tables in Appendix A (seen above) the character "D" in the table denotes SDS's in D3 only (not in E3/M3). A total of 19 JointHistograms were deleted going from D3 to E3/M3 due to 2 GB uncompressed HDF file size limit in HDF4. There are also 14 scaler SDS's related to COP Fractions that are only in the D3 and not propagated to E3/M3 (due to it not being necessary).

The Single Layer Cloud (1L) and Multi Layer Cloud (ML) aggregation is only defined (currently) for the Primary 2.1 retrieval.

Note that only Liquid and Ice are aggregated for 1621, 16, and 37 (Undetermined Phase and Combined Phase were not included).

Appendix B:

Histogram Parameters & Bin Boundaries

Histogram Parameters and Bin Boundaries

Identical in Daily, Eight Day & Monthly Statistics

Aerosol Product (04_L2)

Land Only			
Parameter	Bin Boundaries *	Bins	Units
Aerosol_Optical_Depth_Land	-0.05, 0.0, 0.01, 0.03, 0.05, 0.10, 0.15, 0.2, 0.25, 0.3f, 0.4, 0.5, 0.7, 1.0, 1.5, 2.0, 3.0, 5.0	17	none
Deep_Blue_Aerosol_Optical_Depth_550_Land	0.0, 0.1, 0.3, 0.6, 1.5, 5.0	5	none
Deep_Blue_Angstrom_Exponent_Land	-0.5, 0.0, 1.0, 2.0, 3.0, 5.0	5	none
Deep_Blue_Single_Scattering_Albedo_Land	0.7, 0.86, 0.88, 0.90, 0.92, 0.94, 0.96, 1.00	7	none
Ocean Only			
Parameter	Bin Boundaries *	Bins	Units
Effective_Optical_Depth_Average_Ocean	-0.1, 0.1, 0.3, 0.6, 1.5, 5.0	5	none
Aerosol_PSML003_Ocean	1.0, 10.0, 10E2, 10E3, 10E4, 10E5, 10E6, 10E7, 10E8, 10E9, 10E10	10	cm ⁻²

Water Vapor Product (05_L2)

Parameter	Bin Boundaries *	Bins	Units
Water_Vapor_Near_Infrared_Clear	0.0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.50, .0.60, 0.70, 0.80, 0.90, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 5.5, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 15.0, 20.0	45	cm
Water_Vapor_Near_Infrared_Cloud	0.0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 10.0	35	cm

Cloud Product (06_L2)

Cirrus Detection			
Parameter	Bin Boundaries *	Bins	Units
Cirrus_Reflectance	0.0, 0.005, 0.01, 0.015, 0.02, 0.03,	30	none
	0.04, 0.05, 0.06, 0.07, 0.08, 0.09,		
	0.1, 0.12, 0.14, 0.16, 0.18, 0.20,		
	0.25, 0.30, 0.35, 0.40, 0.45, 0.50,		

	0.60, 0.70, 0.80, 0.90, 1.0, 1.2, 1.5		
Cloud Top Properties			
Parameter	Bin Boundaries *	Bins	Units
Cloud_Top_Pressure	0, 80, 200, 320, 440, 560, 680,	10	hPa
Cloud_Top_Pressure_Day	800, 920, 1040, 1100		
Cloud_Top_Pressure_Night			
Cloud_Phase_Infrared	0, 1, 2, 3-6	4	none
Cloud_Phase_Infrared_Day	(0=clear, 1=water, 2=ice,		
Cloud_Phase_Infrared_Night	3-6=mixed+undet. phase)		
Cloud Optical Properties	1		
Parameter	Bin Boundaries *	Bins	Units
Cloud_Optical_Thickness_Liquid	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,	46	none
Cloud_Optical_Thickness_PCL_Liquid	13, 14, 15, 16, 17, 18, 19, 20, 21,		
Cloud_Optical_Thickness_1L_Liquid	22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48		
Cloud_Optical_Thickness_1621_Liquid	50, 60, 70, 80, 90, 100, 150		
Cloud_Optical_Thickness_1621_PCL_Liquid			
Cloud_Optical_Thickness_16_Liquid *D3 only			
Cloud_Optical_Thickness_16_PCL_Liquid *D3 only			
Cloud_Optical_Thickness_37_Liquid *D3 only			
Cloud_Optical_Thickness_37_PCL_Liquid *D3 only			
Cloud_Optical_Thickness_Ice	0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,	31	none
Cloud_Optical_Thickness_PCL_Ice	0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,		
Cloud_Optical_Thickness_1L_Ice	90, 100, 150		
Cloud_Optical_Thickness_1621_Ice			
Cloud_Optical_Thickness_1621_PCL_Ice			
Cloud_Optical_Thickness_16_Ice *D3 only			
Cloud_Optical_Thickness_16_PCL_Ice *D3 only			
Cloud_Optical_Thickness_37_Ice *D3 only			
Cloud_Optical_Thickness_37_PCL_Ice *D3 only			
Cloud_Effective_Radius_Liquid	4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,	21	μm
Cloud_Effective_Radius_PCL_Liquid *D3 only	15, 16, 17, 18, 19, 20, 22.0, 24, 26, 28, 30		
Cloud_Effective_Radius_1L_Liquid	20,00		
Cloud_Effective_Radius_1621_Liquid			
Cloud_Effective_Radius_1621_PCL_Liquid			
Cloud_Effective_Radius_16_Liquid			
Cloud_Effective_Radius_16_PCL_Liquid			
Cloud_Effective_Radius_37_Liquid			
Cloud_Effective_Radius_37_PCL_Liquid			
Cloud_Ettective_Radius_Ice	5, 10, 15, 20, 25, 30, 35, 40, 45, 50,	11	μm
Cloud Effective Radius_PCL_ICe *Do only			
UUUU_ETTECTIVE_KAAIUS_IL_ICE			

Cloud_Effective_Radius_1621_Ice Cloud_Effective_Radius_1621_PCL_Ice Cloud_Effective_Radius_16_Ice Cloud_Effective_Radius_16_PCL_Ice Cloud_Effective_Radius_37_Ice Cloud_Effective_Radius_37_PCL_Ice			
Cloud_Water_Path_Liquid Cloud_Water_Path_PCL_Liquid Cloud_Water_Path_1L_Liquid Cloud_Water_Path_1621_Liquid Cloud_Water_Path_1621_PCL_Liquid Cloud_Water_Path_16_Liquid Cloud_Water_Path_16_PCL_Liquid Cloud_Water_Path_37_Liquid Cloud_Water_Path_37_PCL_Liquid	0, 10, 20, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 1000, 2000	14	g m ⁻²
Cloud_Water_Path_Ice Cloud_Water_Path_PCL_Ice Cloud_Water_Path_1L_Ice Cloud_Water_Path_1621_Ice Cloud_Water_Path_1621_PCL_Ice Cloud_Water_Path_16_Ice Cloud_Water_Path_16_PCL_Ice Cloud_Water_Path_37_Ice Cloud_Water_Path_37_PCL_Ice	0, 10, 20, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 1000, 2000, 4000, 6000	16	g m ⁻²

Atmosphere Profile Product (07_L2)

Parameter	Bin Boundaries *	Bins	Units
Total_Ozone	0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500	10	Dobson Units
Total_Totals	0, 10, 20, 30, 40, 50, 60, 70, 80		K
Lifted_Index	-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40	12	K
Atmosphere_Water_Vapor Atmosphere_Water_Vapor_ Low Atmosphere_Water_Vapor_High	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10	10	cm

* Note: 1^{st} bin includes values equal to both the low and high bin boundary, 2^{nd} through the n^{th} bin includes values equal to the high bin boundary only

Appendix C:

Joint Histogram Parameters & Bin Boundaries

Joint Histogram Parameters and Bin Boundaries

Identical in Daily, Eight Day & Monthly Statistics

Parameter 1	(Bins): Bin Boundaries *	Parameter 2	(Bins): Bin Boundaries *	D/N
Aerosol over Ocean				
Angstrom Exponent 1 Ocean	(8): -0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5	Effective Optical Depth 0.55 micron Ocean	(9): -0.5, 0.2, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 3.0, 5.0	D
Angstrom Exponent 2 Ocean	(8): -0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5	Effective Optical Depth 0.55 micron Ocean	(9): -0.5, 0.2, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 3.0, 5.0	D
Optical Depth Ratio Small Ocean 0.55 micron	(5): 0.0, 0.2, 0.4, 0.6, 0.8, 1.0	Effective Optical Depth 0.55 micron Ocean	(9): -0.5, 0.2, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 3.0, 5.0	D

Aerosol Product (04_L2)

Cloud Product (06_L2)

Parameter 1	(Bins): Bin Boundaries *	Parameter 2	(Bins): Bin Boundaries *	D/N
All Clouds				
Cloud Top Pressure (hPa)	(14): 0, 120, 200, 280, 360, 440, 520, 600, 680, 760, 840, 920, 1000, 1080, 1120	Effective Emissivity	(6): 0.0, 0.2, 0.4, 0.6, 0.8, 0.95, 1.0	D N D+N
Cloud Top Temperature (K)	(20): 150, 180, 190, 200, 210, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 320	Cloud Top Pressure	(3): 0, 440, 680, 1100	D N D+N
Effective Emissivity (same as first JH, reversed, but different bins)	(11): 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1.0	Cloud Top Pressure (hPa)	(10): 0, 80, 200, 320, 440, 560, 680, 800, 920, 1040, 1100	D N D+N
Cloud Fraction	(12): 0.0, 0.04, 0.08, 0.12, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0	Cloud Top Pressure (hPa)	(10): 0, 80, 200, 320, 440, 560, 680, 800, 920, 1040, 1100	D N D+N
Cloud Top Height (meters)	(12): 0, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000, 15000, 16000, 17000, 18000	Cloud Top Pressure (hPa)	(3): 0, 440, 680, 1100	D N D+N
Cloud Fraction	(12): 0.0, 0.04, 0.08, 0.12, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0	Cloud Top Pressure (hPa)	(10): 0, 80, 200, 320, 440, 560, 680, 800, 920, 1040, 1100	D N D+N

Cloud Top Pressure 1km (hPa)	(10): 0, 80, 200, 320, 440, 560, 680, 800, 920, 1040, 1100	Cloud Top Pressure Nadir (hPa)	(10): 0, 80, 200, 320, 440, 560, 680, 800, 920, 1040, 1100	D N
Cloud Top Temperature (K)	(17): 190, 200, 210, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 310	Cloud Phase Optical Properties	(3): Water, Ice, Undetermined	D
Cloud Top Temperature (K)	(17): 190, 200, 210, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 310	Cloud Phase IR	(3): Water, Ice, Mixed+Undet	DZ
Optical thickness (ISCCP boundaries)	(8): 0, 0.3, 1.3, 3.6, 9.4, 23, 60, 100, 150	Cloud Top Pressure (hPA) (ISCCP boundaries)	(7): 0, 180, 310, 440, 560, 680, 800, 1100	D

Parameter 1	(Bins): Bin Boundaries *	Parameter 2	(Bins): Bin Boundaries *	D/N

Liquid Water Clouds				
Optical thickness	(12): 0, 2, 4, 6, 8, 10, 15, 20, 30, 40, 50, 100, 150	Effective Radius (µm)	(9): 4, 6, 8, 10, 12.5, 15, 17.5, 20, 25, 30	D
Optical Thickness	(12): 0, 2, 4, 6, 8, 10, 15, 20, 30, 40, 50, 100, 150	Cloud Top Temperature (K)	(12): 190, 230, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 310	D
Optical Thickness	(12): 0, 2, 4, 6, 8, 10, 15, 20, 30, 40, 50, 100, 150	Cloud Top Pressure (hPA)	(13): 50, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000, 1100	D
Effective Radius (µm)	(9): 4, 6, 8, 10, 12.5, 15, 17.5, 20, 25, 30	Cloud Top Temperature (K)	(12): 190, 230, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 310	D
Effective Radius (µm)	(9): 4, 6, 8, 10, 12.5, 15, 17.5, 20, 25, 30	Cloud Top Pressure (hPA)	(13): 50, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000, 1100	D

Ice Clouds

Optical Thickness	(12): 0, 0.5, 1, 2.5, 5, 7.5, 10, 15, 20, 30, 50, 100, 150	Effective Radius (µm)	(11): 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60	D
Optical Thickness	(12): 0, 0.5, 1, 2.5, 5, 7.5, 10, 15, 20, 30, 50, 100, 150	Cloud Top Temperature (K)	(13): 190, 200, 210, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270	D
Optical Thickness	(12): 0, 0.5, 1, 2.5, 5, 7.5, 10, 15, 20, 30, 50, 100, 150	Cloud Top Pressure (hPa)	(16): 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000, 1100	D
Optical Thickness	(12): 0, 0.5, 1, 2.5, 5, 7.5, 10, 15, 20, 30, 50, 100, 150	Effective Emissivity	(10): 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0	D

Effective Radius (µm)	(11): 5, 10, 15, 20,	Cloud Top	(13): 190, 200,	D
	25, 30, 35, 40, 45,	Temperature (K)	210, 220, 225, 230,	
	50, 55, 60		235, 240, 245, 250,	
			255, 260, 265, 270	
Effective Radius (µm)	(11): 5, 10, 15, 20,	Cloud Top Pressure	(16): 50, 100, 150,	D
	25, 30, 35, 40, 45,	(hPa)	200, 250, 300, 350,	
	50, 55, 60		400, 450, 500, 550,	
			600, 700, 800, 900,	
			1000, 1100	

* Note: 1^{st} bin includes values equal to both the low and high bin boundary, 2^{nd} through the n^{th} bin includes values equal to the high bin boundary only

Note that all permutations of parameters (1L, 1621, 37, etc are the same as primary)

Appendix D:

Aerosol Derived Parameters C5 to C6 Mapping Table

Joint Histogram Parameters and Bin Boundaries

Level-3 Aerosol Parameter Mapping Table (C005/051 to C006)

See Green shaded boxes for Final Aerosol L3 Parameter Names

Combined Land and Ocean

Input L2 SDS	Old C005/051 L3 SDS	New C006 L3 SDS	L3 Statistics
Scattering_Angle	Scattering_Angle	Aerosol_Scattering_Angle *	S, PC, HC
Optical_Depth_Land_And_Ocean	Optical_Depth_Land_And_Ocean	Aerosol_Optical_Depth_Land_Ocean *	S, PC, HC
Average_Cloud_Pixel_Distance_Land_Ocean	(not in C005/051)	Aerosol_Avg_Cloud_Distance_Land_Ocean *	S, PC

* Note that these three "Combined Land and Ocean" parameters are the ONLY Aerosol related parameters that are NOT being "masked by the Usefulness Flag" in L3 (since no Combined Land and Ocean Usefulness QA exists in L2)

Land Only

Input L2 SDS	Old C005/051 L3 SDS	New C006 L3 SDS	L3 Statistics
Corrected_Optical_Depth_Land	Corrected_Optical_Depth_Land	Aerosol_Optical_Depth_Land	S, QA, HC
Number_Pixels_Used_Land	Number_Pixels_Used_Land	Aerosol_Number_Pixels_Used_Land	S, QA, HC

Deep Blue Aerosol & Deep Blue/Dark Target Combined

Input L2 SDS	Old C005/051 L3 SDS	New C006 L3 SDS	L3 Statistics
Deep_Blue_Spectral_Aerosol_Optical_Depth_Land	Deep_Blue_Aerosol_Optical_Depth_Land	Deep_Blue_Aerosol_Optical_Depth_Land	S, HC
Deep_Blue_Aerosol_Optical_Depth_550_Land	Deep_Blue_Aerosol_Optical_Depth_550_Land	Deep_Blue_Aerosol_Optical_Depth_550_Land	S, HC
Deep_Blue_Angstrom_Exponent_Land	Deep_Blue_Angstrom_Exponent_Land	Deep_Blue_Angstrom_Exponent_Land	S, HC
Deep_Blue_Spectral_Single_Scattering_Albedo_Land	Deep_Blue_Single_Scattering_Albedo_Land	Deep_Blue_Single_Scattering_Albedo_Land	S, HC
Deep_Blue_Number_Pixels_Used_550_Land	(not in C005/051)	Deep_Blue_Number_Pixels_Used_550_Land	S, HC
AOD_550_Dark_Target_Deep_Blue_Combined	(not in C005/051)	AOD_550_Dark_Target_Deep_Blue_Combined	S, HC

Ocean Only

Input L2 SDS	Old C005/051 L3 SDS	New C006 L3 SDS	L3 Statistics
Effective_Optical_Depth_Average_Ocean	Effective_Optical_Depth_Average_Ocean	Aerosol_Optical_Depth_Average_Ocean	S, QA, HC
Optical_Depth_Small_Average_Ocean	(not in C005/051)	Aerosol_Optical_Depth_Small_Ocean	S, QA, HC
PSML003_Ocean	Cloud_Condensation_Nuclei_Ocean	Aerosol_PSML003_Ocean	S, QA, HC
Optical_Depth_by_models_ocean	Optical_Depth_by_models_ocean	Aerosol_Optical_Depth_by_models_ocean	S, QA
Number_Pixels_Used_Ocean	Number_Pixels_Used_Ocean	Aerosol_Number_Pixels_Used_Ocean	S, QA, HC

NEW JOINT HISTOGRAMS:

Ocean (Joint Histograms ONLY)

Input L2 SDS #1	Input L2 SDS #2	New C006 L3 SDS	L3 Statistics
Angstrom_Exponent_1_Ocean	Effective_Optical_Depth_0p55um_Ocean	Aerosol_AE1_Ocean_Joint_Histogram_vs_Opt_Depth	JH only
Angstrom_Exponent_2_Ocean	Effective_Optical_Depth_0p55um_Ocean	Aerosol_AE2_Ocean_Joint_Histogram_vs_Opt_Depth	JH only
Optical_Depth_Ratio_Small_Ocean_0.55micron	Effective_Optical_Depth_0p55um_Ocean	m_Ocean Aerosol_OD_Ratio_Small_Ocean_055_Joint_Histogram_vs Opt_Depth	

L3 Statistics Key: S = Simple QA = QA Weighted HC = Histogram Counts PC = Pixel Counts JH = Joint Histogram

Deleted Aerosol L3 Parameters for C006

Combined Land and Ocean

Input L2 SDS	Old C005/051 L3 SDS	C006 L3 SDS	L3 Statistics
	Optical_Depth_Ratio_Small_Land_And_Ocean	(deleted from C006)	(none)
	Reflected_Flux_Land_And_Ocean	(deleted from C006)	(none)

Land Only

Input L2 SDS	Old C005/051 L3 SDS	C006 L3 SDS	L3 Statistics
	Optical_Depth_Ratio_Small_Land	(deleted from C006)	(none)
	Mass_Concentration_Land	(deleted from C006)	(none)
	Angstrom_Exponent_Land	(deleted from C006)	(none)
	Mean_Reflectance_Land_All_QA47	(deleted from C006)	(none)
	Mean_Reflectance_Land_All_QA66	(deleted from C006)	(none)
	Path_Radiance_Land_QA47	(deleted from C006)	(none)
	Path_Radiance_Land_QA66	(deleted from C006)	(none)
	Critical_Reflectance_Land_QA47	(deleted from C006)	(none)
	Critical_Reflectance_Land_QA66	(deleted from C006)	(none)
	Aerosol_Cloud_Mask_Cloud_Fraction_Land	(deleted from C006)	(none)

Ocean Only

Input L2 SDS	Old C005/051 L3 SDS	C006 L3 SDS	L3 Statistics
	Optical_Depth_Ratio_Small_Ocean	(deleted from C006)	(none)
	Effective_Radius_Ocean	(deleted from C006)	(none)
	Mass_Concentration_Ocean	(deleted from C006)	(none)
	Cloud_Condensation_Nuclei_Ocean	(deleted from C006)	(none)
	Angstrom_Exponent_1_Ocean	(deleted from C006)	(none)
	Angstrom_Exponent_2_Ocean	(deleted from C006)	(none)
	Asymmetry_Factor_Average_Ocean	(deleted from C006)	(none)
	Backscattering_Ratio_Average_Ocean	(deleted from C006)	(none)
	Aerosol_Cloud_Mask_Cloud_Fraction_Ocean	(deleted from C006)	(none)