Effects of cloud horizontal inhomogeneity and drizzle on remote sensing of cloud droplet effective radius: Case studies based on large-eddy simulations

Zhibo Zhang,1,2,3 Andrew S. Ackerman,4 Graham Feingold,5 Steven Platnick,3 Robert Pincus,5,6 and Huwen Xue7

Received 19 February 2012; revised 21 August 2012; accepted 25 August 2012; published 6 October 2012.

1 This study investigates effects of drizzle and cloud horizontal inhomogeneity on cloud effective radius \(r_e \) retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS). In order to identify the relative importance of various factors, we developed a MODIS cloud property retrieval simulator based on the combination of large-eddy simulations (LES) and radiative transfer computations. The case studies based on synthetic LES cloud fields indicate that at high spatial resolution (~100 m) 3-D radiative transfer effects, such as illumination and shadowing, can induce significant differences between retrievals of \(r_e \) based on reflectance at 2.1 \(\mu m \) \((r_{e,2.1}) \) and 3.7 \(\mu m \) \((r_{e,3.7}) \). It is also found that 3-D effects tend to have stronger impact on \(r_{e,2.1} \) than \(r_{e,3.7} \), leading to positive difference between the two \((\Delta r_{e,3.7-2.1}) \) from illumination and negative \(\Delta r_{e,3.7-2.1} \) from shadowing. The cancellation of opposing 3-D effects leads to overall reasonable agreement between \(r_{e,2.1} \) and \(r_{e,3.7} \) at high spatial resolution as far as domain averages are concerned. At resolutions similar to MODIS, however, \(r_{e,2.1} \) is systematically larger than \(r_{e,3.7} \) when averaged over the LES domain, with the difference exhibiting a threshold-like dependence on both \(r_{e,2.1} \) and an index of the sub-pixel variability in reflectance \((H_r) \), consistent with MODIS observations. In the LES cases studied, drizzle does not strongly impact \(r_e \) retrievals at either wavelength. It is also found that opposing 3-D radiative transfer effects partly cancel each other when cloud reflectance is aggregated from high spatial resolution to MODIS resolution, resulting in a weaker net impact of 3-D radiative effects on \(r_e \) retrievals. The large difference at MODIS resolution between \(r_{e,3.7} \) and \(r_{e,2.1} \) for highly inhomogeneous pixels with \(H_r > 0.4 \) can be largely attributed to what we refer to as the “plane-parallel \(r_e \) bias,” which is attributable to the impact of sub-pixel level horizontal variability of cloud optical thickness on \(r_e \) retrievals and is greater for \(r_{e,2.1} \) than \(r_{e,3.7} \). These results suggest that there are substantial uncertainties attributable to 3-D radiative effects and plane-parallel \(r_e \) bias in the MODIS \(r_{e,2.1} \) retrievals for pixels with strong sub-pixel scale variability, and the \(H_r \) index can be used to identify these uncertainties.

1. Introduction

[2] Low-level maritime water clouds have a strong cloud radiative forcing [Hartmann et al., 1992] and are thought to be particularly sensitive to aerosol influences owing to their low altitude. A key parameter in aerosol-cloud interactions is the cloud droplet effective radius \(r_e \), which also has a strong influence on cloud radiative effects. In satellite-based retrievals, \(r_e \) is most frequently derived together with cloud optical thickness \((\tau) \) from reflectance measurements at two wavelengths [Nakajima and King, 1990], one usually in the visible or near-infrared spectral region (for example, 0.86 \(\mu m \)), where water has negligible absorption and therefore cloud reflection is determined mainly by \(\tau \), and the other in the shortwave infrared (for example, 1.6 \(\mu m \), 2.1 \(\mu m \), or 3.7 \(\mu m \)),...
where liquid- and ice-phase water have significant absorption and cloud reflectance decreases with increasing \(r_e \). This so-called bi-spectral method has been widely adopted [Han et al., 1994; Platnick and Twomey, 1994; Nakajima and Nakajima, 1995; Platnick et al., 2003; Roebeling et al., 2006] and forms the basis of global surveys of particle size by the MODIS instruments [Platnick et al., 2003]. Note that in both the operational MODIS cloud product and in this study, \(\tau \) is defined with respect to the visible spectral region and remains almost invariant from the visible to shortwave infrared regions of interest in this study.

[5] Because of their strong radiative forcing [Hartmann et al., 1992], even small biases in \(r_e \) or \(\tau \) retrievals for low-level maritime water clouds can lead to significant errors in calculations of cloud radiative forcing. It is estimated that even a moderate perturbation to the \(r_e \) of these clouds can lead to a global radiative forcing perturbation of around 1–2 W m\(^{-2}\) [Oreopoulos and Platnick, 2008]. It is therefore critical to identify the sources and magnitudes of bias in the cloud property retrievals for these clouds.

[4] Recently, several studies [Nakajima et al., 2010b; Seethala and Horváth, 2010; Zhang and Platnick, 2011] have shown that \(r_e \) retrievals based on the 3.7 \(\mu \)m MODIS band \((r_{e,3.7}) \) are systematically smaller than those based on measurements in the 2.1 \(\mu \)m band \((r_{e,2.1}) \). As shown by Zhang and Platnick [2011], the difference (\(\Delta r_{e,3.7-2.1} \)) is strongly dependent on cloud regime: over the trade wind cumulus cloud region, where clouds are often broken, the difference can be as large as 10 \(\mu \)m. These findings indicate substantial uncertainties in the current satellite-based cloud \(r_e \) retrievals.

[5] Two hypotheses have been proposed to explain these large differences. One possibility is the presence of drizzle within the cloud. The weighting function for cloud reflectance is a function of the magnitude of absorption [e.g., Platnick, 2000; Zhang et al., 2010], such that \(r_{e,3.7} \) is weighted more toward cloud top than \(r_{e,2.1} \) because of the stronger water absorption and smaller penetration depth of the 3.7 \(\mu \)m band. Drizzle in marine boundary layer clouds causes \(\tau \) to increase toward cloud base, a vertical structure that might potentially produce larger values of \(r_{e,2.1} \) than \(r_{e,3.7} \) [e.g., Chang and Li, 2002; Nakajima et al., 2010a, 2010b; Suzuki et al., 2010].

[6] The second hypothesis centers on the role of horizontal inhomogeneity, and possibly three-dimensional radiative transfer effects, in determining cloud reflectance [Boeke, 2009; Hayes et al., 2010; Seethala and Horváth, 2010; Zhang and Platnick, 2011]. Most satellite retrievals, including the bi-spectral method, assume that clouds are both horizontally and vertically homogeneous within the instrument field of view (typically on the order of a few hundred meters to a few kilometers). Unfortunately, this assumption can cause significant errors when the clouds exhibit sizable spatial variability within the sensor field of view [Marshak et al., 2006; Liang et al., 2009; Di Girolamo et al., 2010]. Zhang and Platnick [2011] noticed that the \(r_{e,3.7} \) and \(r_{e,2.1} \) differ most in pixels with both large \(r_{e,2.1} \) and large sub-pixel inhomogeneity, and suggested that effects associated with cloud horizontal inhomogeneity may play an important role in causing the observed \(\Delta r_{e,3.7-2.1} \) (see section 2 for details).

[7] It must be noted that the two hypotheses should not be considered mutually exclusive as they may both play a role in the observed \(\Delta r_{e,3.7-2.1} \). Nevertheless, these hypotheses have very different implications. If \(\Delta r_{e,3.7-2.1} \) is a result of drizzle, it could provide useful information, including remote drizzle detection [Chang and Li, 2002, 2003; Kokhanovsky and Rozanov, 2011]. If \(\Delta r_{e,3.7-2.1} \) results from cloud horizontal inhomogeneity, however, it reflects the limitations of the retrieval algorithm assumptions and might be used to assess retrieval quality.

[8] Although an understanding of the relative importance of drizzle and cloud inhomogeneity on MODIS \(r_e \) retrievals is desired, it is difficult to separate the influences of these factors using MODIS observations alone. Fortunately, high-resolution cloud resolving models provide a useful tool for cloud remote-sensing studies. A high-resolution cloud resolving model, coupled with a plausible treatment of cloud microphysics, can provide detailed information on cloud macrophysical and microphysical structure. Cloud fields from such a model can be used as input to drive 3-D radiative transfer models to simulate satellite observations. Then, cloud property retrievals based on simulated observations can be compared with the original simulated cloud fields to identify the influence of various factors on passive cloud property retrievals. One of the advantages of such a simulator is its flexibility to accommodate various mechanisms at different levels of complexity. For example, the impact of 3-D effects can be estimated by comparing 3-D with 1-D radiative transfer simulations. The impact of drizzle can be estimated by artificially removing it from the simulated cloud fields. In previous studies, the difference between \(r_{e,2.1} \) and \(r_{e,3.7} \) has been assessed and analyzed based on MODIS observations and hypotheses have been proposed to explain the difference. In this study, these hypotheses will be tested using synthetic cloud fields from a large-eddy simulation (LES) model. For this purpose, we have developed a MODIS cloud property retrieval simulator using a LES model combined with 1-D and 3-D radiative transfer models. Below we present several case studies based on this simulator and discuss the implications of the results.

[9] The objectives of this study are twofold. First, we will introduce our simulator and demonstrate its capabilities for simulating MODIS cloud property retrievals, including the subtle difference between \(r_{e,2.1} \) and \(r_{e,3.7} \). Second, using the simulator, we will investigate the effects of cloud horizontal inhomogeneity and drizzle on satellite \(r_e \) retrievals based on the bi-spectral method, their relative importance under various circumstances, and the implications for introducing systematic bias in the observational record. In particular, we will attempt to address the following questions: How and to what extent do drizzle and cloud inhomogeneity affect MODIS \(r_{e,2.1} \) retrievals? Do they affect the \(r_{e,3.7} \) retrieval in different ways or to different degrees? Finally, can they lead to systematic retrieval bias?

[10] We will first introduce in section 2 the “plane-parallel \(r_e \) bias” using simple idealized cases, as well as summarize recent observational results with respect to differences between MODIS \(r_{e,3.7} \) and \(r_{e,2.1} \) for maritime water clouds. We will then describe the MODIS simulator in section 3 and the case studies in section 4. Results are discussed in section 5 in the context of MODIS observations.

2. Background

[11] To provide clarity for more detailed discussions below, it is important to briefly introduce the concept of the plane-parallel \(r_e \) bias and revisit some 3-D radiative transfer

2 of 18
effects known to have strong impacts on cloud property retrievals. A summary of the main findings from a recent study of MODIS retrievals for maritime water clouds follows.

2.1. Plane-Parallel Bias

[12] We define the plane-parallel bias as the impact of small-scale variability in reflectance on retrievals that use area-averaged reflectance. This bias is illustrated using two idealized examples in Figure 1, which shows forward calculations of reflectance in a single non-absorbing band (0.86 μm) and two bands with different amounts of liquid water absorption (2.1 μm and 3.7 μm). In Figures 1a and 1b, we assume that half of a MODIS pixel overlying a black surface is covered by a cloud with \(t_1 = 2.8 \) and \(r_e = 8 \) μm, and the other half is covered by a cloud with \(t_2 = 30.8 \) and \(r_e = 8 \) μm. Figures 1c and 1d assume the same optical thickness but use \(r_e = 18 \) μm. Focusing on the \(r_e \) retrieval, the figure illustrates the well-known "plane-parallel albedo bias" [Cahalan et al., 1994]: the retrieved \(r_e \) based on the mean reflectance of inhomogeneous pixels tends to be smaller than the mean of the sub-pixel \(r_e \). In this example the value of \(r_e \) retrieved from averaged reflectance (10.8) is substantially smaller than the average value (16.8).

[13] This problem is more acute for retrievals of \(r_e \) because the reflectance used to infer \(r_e \) also depends on \(\tau \) over much of the range of plausible values. If the reflectance at non-absorbing and absorbing wavelengths depended only on \(\tau \) and \(r_e \), respectively, (in other words, the look-up-table is orthogonal) reflectance at absorbing wavelengths would be uniform in our example and particle size could be retrieved perfectly. As the figure demonstrates, however, the look-up-table is not orthogonal. The nonlinearity leads to a simultaneous underestimate of \(\tau \) (i.e., plane-parallel-albedo bias) and overestimate of \(r_e \) (i.e., plane-parallel \(r_e \) bias). The area over which this is true is larger in the less-absorbing band, which explains why the size overestimate at 2.1 μm is larger than at 3.7 μm (\(r_e \) estimates of 11.7 and 8.8 μm, respectively, in Figures 1a and 1b). The impact becomes more pronounced as \(r_e \) increases: in Figures 1c and 1d the true \(r_e = 18 \) μm while \(r_e,2.1 \) and \(r_e,3.7 \) retrieved from averaged reflectances are 24 μm and 18.1 μm, respectively, resulting in a \(\Delta r_e,3.7-2.1 \) around -6 μm.

[14] It is to be noted that the underlying assumption behind the examples in Figure 1 is that \(\tau \) has stronger small-scale horizontal variability than \(r_e \). This assumption appears reasonable, as \(\tau \) can vary over several order of magnitude, while \(r_e \) varies mostly from a few to a few tens of microns. On the other hand, if \(r_e \) has substantial sub-pixel variability, the configuration of \(\tau \) and \(r_e \) would be different from those in Figure 1. The plausibility of the example shown in Figure 1 will be examined in the LES cases.

Figure 1. Two theoretical cases to illustrate the nonlinearity effect in \(r_e \) retrievals resulting from sub-pixel cloud inhomogeneity. Numbers on top of the Nakajima-King look-up-table (LUT) curves correspond to values of \(\tau \) contour lines in the LUT, and the numbers on the right of the curves correspond to values of \(r_e \) contour lines in the LUT.
2.2. 3-D Radiative Transfer Effects

[15] Cloud horizontal inhomogeneity can also induce net horizontal transfer of radiation that is neglected by the one-dimensional models on which retrievals are based. Effects of this 3-D radiative transfer, such as illuminating and shadowing, are known to have potential impacts on \(r_e \) and \(\tau \) retrievals [e.g., Vörnai and Davies, 1999; Vörnai and Marshak, 2002; Kato et al., 2006; Marshak et al., 2006]. For example, the illuminating effect makes clouds appear brighter than expected under the plane-parallel cloud assumption, resulting in overestimated \(\tau \) and underestimated \(r_e \) retrievals. The shadowing effect makes clouds appear darker, resulting in underestimated \(\tau \) and overestimated \(r_e \) [Marshak et al., 2006].

[16] The 3-D radiative effects may affect \(r_{e,2.1} \) and \(r_{e,3.7} \) retrievals to different extents and lead to significant differences between the two. In a simple step-cloud case, Zhang and Platnick [2011] noted that the 3-D radiative effects tend to have a stronger impact on \(r_{e,2.1} \) than \(r_{e,3.7} \) (see their Figure 15). This is likely because stronger absorption in 3.7 \(\mu \)m leads to less multiple-scattering and, as a result, less photon horizontal transport. The implication is that the illuminating effect tends to result in positive \(\Delta r_{e,3.7-2.1} \) because it reduces \(r_{e,2.1} \) more than \(r_{e,3.7} \), while the shadowing effect tends to result in negative \(\Delta r_{e,3.7-2.1} \) because it increases \(r_{e,2.1} \) more than \(r_{e,3.7} \).

[17] When a cloud pixel has strong horizontal heterogeneity, both 3-D radiative effects and the plane-parallel \(r_e \) bias discussed in the previous section may collude to create either positive or to either positive or negative \(\Delta r_{e,3.7-2.1} \). However, because the illuminating and shadowing effects naturally come in pairs and tend to cancel each other [Marshak et al., 2006], the plane-parallel \(r_e \) bias might be expected to be the dominant factor when averaged over many cloud cells. We will return to this point in section 5.2.

2.3. MODIS Observations

[18] Many studies have noted that MODIS retrievals of \(r_{e,2.1} \) tend to be systematically larger than \(r_{e,3.7} \) [Chang and Li, 2002; Nakajima et al., 2010b; Seethala and Horváth, 2010; Zinner et al., 2010] and that the difference between them, \(\Delta r_{e,3.7-2.1} \), is a strong function of cloud regime, varying from 0 to \(-2 \mu \)m over coastal stratocumulus to as large as \(-5 \) to \(-10 \mu \)m in regions of broken cumulus [Zhang and Platnick, 2011]. Zhang and Platnick [2011] demonstrated that underlying the regional dependency was a dependence on the sub-pixel scale variability of non-absorbing reflectance \(H_o \) [Liang et al., 2009]:

\[
H_o = \frac{\text{stddev}[R_i(0.86 \mu \text{m}, 250 \text{m})]}{\text{mean}[R_i(0.86 \mu \text{m}, 250 \text{m})]},
\]

where \(\text{stddev}[R_i(0.86 \mu \text{m}, 250 \text{m})] \) and \(\text{mean}[R_i(0.86 \mu \text{m}, 250 \text{m})] \) indicate the standard deviation and mean of the measured reflectances, respectively, for the principle sixteen 250 m-resolution sub-pixels within the 1 km MODIS retrieval footprint. Thus, \(H_o \) has a spatial resolution (i.e., 1 km) consistent with the cloud property retrieval and increases with pixel inhomogeneity. The dependence of pixel-level \(\Delta r_{e,3.7-2.1} \) on \(r_{e,2.1} \) and \(H_o \) in one month of MODIS observations of warm liquid phase clouds (with cloud top temperature \(>273 \) K) over ocean is illustrated in Figure 2. The most striking feature is the area of large differences \(\Delta r_{e,3.7-2.1} \sim \sim -10 \mu \)m in the upper right corner of Figure 2. The large differences are associated with large \((>25 \mu \)m\) values of \(r_{e,2.1} \) and large sub-pixel inhomogeneity \((H_o \sim 1)\). \(\Delta r_{e,3.7-2.1} \) remains stable when \(H_o \) is smaller than about 0.4, but becomes increasingly negative with increasing \(H_o \) when \(H_o > 0.4 \). For a given \(H_o \), \(\Delta r_{e,3.7-2.1} \) generally increases with \(r_{e,2.1} \).

[19] As mentioned earlier, some studies interpret negative values of \(\Delta r_{e,3.7-2.1} \) as evidence of drizzle in water clouds, such that the 2.1 \(\mu \)m band (with weak water absorption) penetrates deeper into the cloud than the 3.7 \(\mu \)m band and so can be more strongly affected by large drizzle drops in the lower part of the cloud [Chang and Li, 2002; Nakajima et al., 2010a]. Others argue that the difference between \(r_{e,2.1} \) and \(r_{e,3.7} \) is mainly a result of the plane-parallel \(r_e \) bias illustrated in Figure 1. Both hypotheses would find support in Figure 2. The fact that the strongest \(\Delta r_{e,3.7-2.1} \) is found where \(r_{e,2.1} \) is larger than 25 \(\mu \)m is consistent with the drizzle hypothesis because drizzling clouds tend to have larger \(r_e \) than non-drizzling clouds. On the other hand, large values of the sub-pixel inhomogeneity index \(H_o \) in the same region would imply plane-parallel \(r_e \) bias in the retrieval.

3. Simulating MODIS Retrievals

[20] Since the two hypotheses cannot be distinguished using the observations alone, we turn to retrievals from synthetic clouds in which the radiative transfer effects can be carefully controlled. Cloud structure is obtained from simulations by the DPARMA LES model [Stevens et al., 2002; Ackerman et al., 2004]. Here, DHARMA uses a single-moment bin microphysics scheme to resolve size distributions of aerosols and activated water drops each into 25 size bins, spanning particle radii of 0.01–2.5 and 1–250 \(\mu \)m, respectively. The size distributions of activated droplets on
the DHARMA grid is used to derive cloud scattering properties at MODIS cloud bands, which in turn are used to drive radiative transfer simulations. The bin microphysics approach obviates the requirement of a priori assumptions about cloud drop size distributions. Fields from the LES model described by Feingold et al. [1996] and Xue et al. [2008] have also been examined, but are not shown here because the results are comparable to our analysis of the DHARMA cases. The bin microphysics approach obviates the requirement of a priori assumptions about cloud drop size distributions. Fields from the LES model described by Feingold et al. [1996] and Xue et al. [2008] have also been examined, but are not shown here because the results are comparable to our analysis of the DHARMA cases.

21 Radiative transfer is computed using the I3RC community Monte-Carlo model [Cahalan et al., 2005; Pincus and Evans, 2009] for 3-D simulations and the DISORT model [Stamnes et al., 1988] for 1-D simulations. The single-scattering properties of cloud droplets (extinction efficiency $Q_{e,i}$, single-scattering albedo ω_i and phase function P_i) in each size bin, i, are computed using the Mie code of Wiscombe [1979], following the steps described by Platnick and Valero [1995], for each MODIS band used. In the DISORT model, the scattering properties of a cloudy grid cell are computed off-line by averaging $Q_{e,i}$, ω_i and P_i over the cloud drop size distribution (DSD) from the LES. In the I3RC model, the DSD-averaged scattering properties are constructed online (instead of pre-computed off-line as in the 1-D simulation), from $Q_{e,i}$, ω_i and P_i based on the cloud DSD. The dynamical construction is implemented through a Monte-Carlo sampling of the relative cumulative extinction function F defined as:

$$F_i = \frac{\sum_{j=1}^{i} Q_{e,j} r_j^2 \eta_j}{\sum_{j=1}^{N} Q_{e,j} r_j^2 \eta_j}, i = 1...N.$$

22 For a given MODIS band, the shape of F is determined by the cloud DSD. In a scattering event, a random number ζ_i uniformly distributed between 0 and 1, is generated. Cloud droplets in the ith size bin with $F_i < \zeta < F_{i+1}$ are then chosen to interact with (i.e., scatter or absorb) the photon. This on-line construction scheme preserves the detail of the cloud microphysical properties from the LES in radiative transfer simulation.

4. Case Studies

4.1. Cloud Fields From Large-Eddy Simulations

23 Using the MODIS simulator described above, we have investigated the MODIS radius retrievals for three large-eddy simulations of marine water clouds. The first (referred to as “ATEX clean” hereafter) and second (“ATEX polluted”) cases are based on an idealized case study [Stevens et al., 2001] from the Atlantic Trade Wind Experiment (ATEX), with different initial aerosol loadings. A diagnostic approach [Clark, 1974] is used for the aerosol, in which the total number concentration of unactivated aerosol particles plus activated droplets is fixed at values of 40 and 600 cm$^{-3}$ for the clean and polluted cases, respectively, resulting in average cloud droplet concentrations (weighted by liquid water mixing ratio) of about 30 and 300 cm$^{-3}$. The total number and size distribution of activated droplets vary in each grid cell over the course of the simulation. For the 8-h ATEX simulations the domain size is 9.6 km \times 9.6 km \times 3 km, with a uniform grid mesh of $\Delta x = \Delta y = 100$ m and $\Delta z = 40$ m. (Further details of the model setup for the ATEX cases are provided by Fridlind and Ackerman [2011].) A snapshot of the cloud field is taken every half hour over the last 4 h. Therefore, each case contains eight 3-D cloud scenes from the large-eddy simulation, equivalent to about 800 1 km \times 1 km pixels. The third case (referred to as the DYCOMS-II case) is based on an idealization of conditions observed during the second research flight (RF02) of the Second Dynamics and Chemistry of Marine Stratocumulus project (DYCOMS-II). For this case, the domain size is 6.4 km \times 6.4 km \times 1.5 km, and the grid spacing is $\Delta x = \Delta y = 50$ m in the horizontal and stretched vertically, with a spacing minimum of 5 m near the surface and inversion. The average cloud droplet number concentration in the DYCOMS-II case is about 60 cm$^{-3}$. A snapshot is taken every hour over the last 4 h of the 6-h simulation, yielding about 200 1 km \times 1 km pixels. (Further details of the model setup for the DYCOMS-II case are provided by Ackerman et al. [2009].) Table 1 provides a summary of model setup and cloud properties for the three cases.

24 Figure 3 provides a planar view of the cloud radius derived from LES for these three cases. The DYCOMS-II case is almost overcast, while the cloud fraction, defined as fraction of columns with $\tau > 0.1$, in ATEX is around 0.7. Enough drizzle develops in the ATEX clean case that drizzle (i.e., $r > 30$ μm) accounts for a significant fraction of the total optical thickness τ, but is negligible in the other cloud fields. It is important to note that the cloud τ in Figure 3 is derived from the droplet number concentrations from the LES. It can be different from the τ retrieved from cloud reflectance. The three sets of cloud fields also differ significantly in terms of r_e and cloud inhomogeneity, which we will exploit to help understand the dependence of $\Delta r_{e,0.3-0.7-2.1}$ on cloud regimes.

25 Figure 4 provides an example cloud microphysics simulation from the LES model. The cloud droplet size distributions at three different vertical levels of a selected LES column from the ATEX-clean case are plotted. The location of this column is indicated in Figure 3 (left) by a red star. This particular column is drizzling as indicated by the

<table>
<thead>
<tr>
<th>Case Name</th>
<th>Domain Size</th>
<th>Grid Mesh</th>
<th>Cloud Type</th>
<th>Total Particle Conc. (θ/cm3)</th>
<th>Cloud Coverage</th>
<th>Domain Average τ</th>
<th>Domain Averaged LWP (g/m2)</th>
<th>Domain Averaged Precipitation Rate at LCL (mm/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATEX Clean</td>
<td>9.6 km \times 9.6 km</td>
<td>$\Delta x = \Delta y = 100$ m $\Delta z = 40$ m</td>
<td>Cu</td>
<td>40</td>
<td>72%</td>
<td>5.4</td>
<td>70</td>
<td>0.26</td>
</tr>
<tr>
<td>ATEX Polluted</td>
<td>9.6 km \times 9.6 km</td>
<td>$\Delta x = \Delta y = 100$ m $\Delta z = 40$ m</td>
<td>Cu</td>
<td>600</td>
<td>78%</td>
<td>8.6</td>
<td>41</td>
<td>0.00</td>
</tr>
<tr>
<td>DYCOMS-II (RF02)</td>
<td>6.4 km \times 6.4 km</td>
<td>$\Delta x = \Delta y = 50$ m Δz varies</td>
<td>Sc</td>
<td>75a</td>
<td>100%</td>
<td>14.5</td>
<td>114</td>
<td>0.07</td>
</tr>
</tbody>
</table>

aCloud coverage is defined as fraction of LES columns with 0.86 μm cloud reflectance larger than 0.02.

bDomain-average lifting condensation level (LCL) used as representative of cloud base.

cAerosol size distribution is bimodal for this case; given is the concentration in the accumulation mode.
development of the drizzle mode in the size distribution from cloud top toward cloud base. Figure 4 also demonstrates the level of complexity of the LES cloud fields used in this study. In many previous studies based on LES cloud fields, cloud microphysical properties are often greatly simplified. For example, in Kato et al. [2006] and Marshak et al. [2006] a constant value of r_e is assumed for all cloudy cells. In contrast, in this study every detail of the bin microphysics from the LES model is preserved in the radiative transfer simulations as described in section 3.

4.2. Radiative Transfer Calculations

[26] Both 1-D and 3-D radiative transfer calculations are performed for the 0.86 μm, 2.1 μm and 3.7 μm MODIS bands. Because most of the low-level maritime warm clouds of interest to this study are located in tropical or sub-tropical regions, reflectance is calculated at two solar zenith angles (SZA) (20° and 50°) and a single value of relative azimuth (30°) to simulate the high-sun and low-sun conditions frequently encountered by MODIS over the tropical or subtropical regions [Seethala and Horváth, 2010]. Reflectances under each SZA are computed at viewing zenith angles (10° intervals from 0° to 50°) that mimic the scan range of the MODIS instrument. Without explicit indication, retrieval results at different solar and viewing angles are simply combined together in the analysis for more robust statistics; the dependence of results on solar and viewing angles will be investigated later in section 5.2. For simplicity, the surface is assumed to be black and atmospheric absorption is not considered in any of the simulations.

[27] In practice the 3.7 μm band observation contains both solar reflection and thermal emission components, the latter having to be accounted for during retrieval. We initially included emission in our radiative transfer calculations; however, sensitivity studies (not shown) indicate that including the thermal correction makes no significant difference in the simulation, especially for pixels with $r > 5$. For this reason, we will consider only the solar reflection component of the 3.7 μm observation.

[28] We perform retrievals using reflectance at high (native LES) and MODIS-like resolutions; for the latter we use area-averaged reflectance as input to the retrieval. (We have adopted 800 m resolution instead of the nominal 1 km because our model domains are more neatly divisible by 800 m. Sensitivity studies [not shown] indicate the difference between 800 m and 1 km retrievals is negligible.) Given two methods for computing radiative transfer (1-D and 3-D), this produces four sets of retrievals, each of which is affected by different factors (Table 2). High-resolution 1-D

<table>
<thead>
<tr>
<th>3-D Radiative Effects</th>
<th>Cloud Vertical Structure and Drizzle Effects</th>
<th>(Plane-Parallel r_e bias)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-D LES resolution</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1-D MODIS resolution</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>3-D LES resolution</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3-D MODIS resolution</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Figure 3. Plan view of the cloud τ of (left) the ATEX clean case at 6 h of simulation time, with the red star indicating the location of the column shown in Figure 4, (middle) the ATEX polluted case at 6 h, and (right) the DYCOMS-II case at 4 h. The red contour indicates where drizzle drops with $r > 30 \mu$m contribute more than 10% of the cloud τ.

Figure 4. Cloud droplet size distributions at three different vertical levels of a LES column (red star in Figure 3) from the ATEX clean case. The three levels roughly correspond to cloud top (altitude $z = 1.5$ km), middle of the cloud ($z = 1.0$ km), and cloud base ($z = 0.7$ km), respectively.

Table 2. Summary of How Different Effects Influence the Retrievals Based on the Different Combinations of Spatial Resolution (LES Native or MODIS) and Radiative Transfer Schemes (1-D or 3-D)
simulations, for example, are free of 3-D radiative effects and plane-parallel r_e bias, but are affected by the cloud vertical structure, including drizzle, so that differences between $r_{e,2.1}$ and $r_{e,3.7}$ retrievals can be attributed to cloud physics. Retrievals simulated at 800 m resolution based on 3-D radiative transfer are affected by all potential factors and resemble real MODIS observations. It is worth pointing out that, no matter which method (i.e., 1-D or 3-D) or resolution (LES native or MODIS observations), there is relatively little variability in reference r_e in this manner: most values lie between 13 μm and 22 μm, with very little difference between estimates from 2.1 μm reflectance and those from 3.7 μm reflectance (Figures 5a and 5b). The close agreement between $r_{e,3.7}$ and $r_{e,2.1}$ in Figure 5a suggests that drizzle or cloud vertical structure has either little impact, or affects reflectance at both wavelengths roughly equally. We return to this point in section 5.1.

In 3-D simulations retrieved drop sizes agree well in the range between 15 μm to 20 μm, but $r_{e,3.7}$ overestimates $r_{e,2.1}$ for $r_{e,2.1} < 15 \mu m$ and underestimates $r_{e,2.1}$ for $r_{e,2.1} > 20 \mu m$. Most reference values of both $r_{e,3.7}$ and $r_{e,2.1}$ are between 15 μm and 20 μm, so these out-of-range retrievals (i.e., $r_{e,2.1} < 15$ and $r_{e,2.1} > 20 \mu m$) are likely the result of 3-D effects. The results are also consistent with the idea that retrievals that resemble retrievals from 1-D effects should be larger than in $r_{e,3.7}$, yielding negative $\Delta r_{e,3.7-2.1}$. This hypothesis will be further explored in section 5.2.

Figure 5 indicates that, though 3-D radiative transfer increases the scatter, retrievals made from reflectance computed at high resolution are broadly consistent across wavelengths. Results at the MODIS resolution, shown in Figure 6, tell a different story: $r_{e,3.7}$ retrievals in both 1-D and 3-D simulations are biased significantly smaller compared with the $r_{e,2.1}$ retrievals. Note also that some very large (>20 μm) $r_{e,2.1}$ retrievals emerge in Figure 6a; $\Delta r_{e,3.7-2.1}$ can be up to −10 μm in these pixels. The 3-D retrieval results in Figures 6c and 6d are quite similar to the 1-D results, suggesting the same mechanism is operative in both 1-D and 3-D retrievals.

Our results are also consistent with the MODIS observations shown in Figure 2. Figure 7 shows composite plots of MODIS resolution $\Delta r_{e,3.7-2.1}$ as a function of $r_{e,2.1}$ and H_r for both 1-D and 3-D simulations of the ATEX clean case. In the 1-D retrieval (Figure 7a), $r_{e,2.1}$ is mostly between 15 μm and 20 μm and $\Delta r_{e,3.7-2.1}$ remains close to zero until H_r reaches 0.5, after which $r_{e,2.1}$ rapidly jumps to much smaller values and $\Delta r_{e,3.7-2.1}$ drops dramatically from near zero to negative values as large as −10 μm. Consequently, the largest negative values of $\Delta r_{e,3.7-2.1}$ are found at the
upper right corner of Figure 7a, where both $r_{e,2.1}$ and $H_σ$ are large. The 3-D retrievals (Figure 7b) behave much like the 1-D results (Figure 7a), though with more spread and with a less defined threshold. Unique to the 3-D simulations is the transition of $Δr_{e,3.7−2.1}$ from red (positive) to green (negative) as $r_{e,2.1}$ increases from 12 μm to more than 20 μm. Positive values of $Δr_{e,3.7−2.1}$ correspond to points above the zero line in Figure 6d and above zero in Figure 5d. As discussed above, these points are likely attributable to 3-D radiative effects, such as photon horizontal transport, illuminating and shadowing.

4.4. Results From the ATEX Polluted and DYCOMS-II Cases

[35] Results from the ATEX polluted and the DYCOMS-II cases are consistent with these findings (Figure 8). By design, drop sizes are smaller in the ATEX polluted case (Figures 8a and 8b) than in the ATEX clean examples, with reference r_e values generally below 10 μm. Most pixels in the ATEX polluted case have small-to-moderate $H_σ$ < 0.5 and stable values of $r_{e,2.1}$ and $Δr_{e,3.7−2.1}$, with larger $r_{e,2.1}$ and large negative $Δr_{e,3.7−2.1}$ for the small population of pixels with $H_σ > 0.5$.

[36] The DYCOMS-II case (Figures 8c and 8d) is almost overcast and the clouds are more homogenous, so that $H_σ$ is small everywhere in the domain and neither the threshold behavior of $r_{e,2.1}$ nor very large negative $Δr_{e,3.7−2.1}$ values (i.e., $Δr_{e,3.7−2.1} < -5 \mu$m) are evident. The effects of 3-D radiative transfer are similar to those demonstrated for the ATEX clean case. In particular, 3-D effects have a greater impact on $r_{e,2.1}$ than on $r_{e,3.7}$ so that anomalously small values of $r_{e,2.1}$ (here, less than 14 μm) are associated with positive $Δr_{e,3.7−2.1}$, while pixels with abnormally large $r_{e,2.1} > 18 \mu$m tend to have negative $Δr_{e,3.7−2.1}$.

[37] Figures 7 and 8 demonstrate that differences between $r_{e,3.7}$ and $r_{e,2.1}$ retrievals at MODIS resolution in our simulations are largely controlled by the sub-pixel level cloud inhomogeneity: $Δr_{e,3.7−2.1}$ becomes increasingly negative as $H_σ$ increases, and the differences are associated with large
5. Disentangling the Impacts of Drizzle and Cloud Inhomogeneity

In this section we investigate the effect of drizzle and sub-pixel level cloud inhomogeneity on MODIS r_e retrievals, focusing on pixels with the largest magnitude of $\Delta r_{e,3.7-2.1}$ to investigate causal links among $r_{e,2.1}$, H_o and $\Delta r_{e,3.7-2.1}$. We use the ATEX clean case because of its significant drizzle and general consistency with the other two cases.

5.1. Influence of Drizzle

We define drizzle drops as those droplets with $r > 30 \mu m$, as this threshold generally separates the droplet size distribution into drizzle and cloud modes (see Figure 4). We investigate the impact of these drops on our retrievals by performing calculations in which these drops are removed. Comparisons of LES resolution r_e, $r_{e,2.1}$, and $r_{e,3.7}$ retrievals based on 3-D reflectances between results that include or
exclude drizzle drops are shown in Figures 9a, 9b and 9c, respectively. The MODIS resolution retrievals after the removal of drizzle are shown in Figures 9d and 9e in the same manner as in Figures 6d and 7b. The removal of large drizzle drops in the radiative transfer simulation results in slightly smaller cloud optical thickness (Figure 9a) and effective radius retrievals (Figures 9b and 9c), as might be expected, but the differences between simulations with and without drizzle are very small. Indeed, at the MODIS resolution (Figures 9d and 9e), the retrievals after the removal of drizzle look almost identical to those with drizzle (Figures 6d and 7b). Thus drizzle drops with \(r > 30 \) \(\mu \text{m} \) have a very minor impact on the \(r_{e,2.1} \) and \(r_{e,3.7} \) retrievals in this particular example, so drizzle cannot be the primary reason for bias between \(r_{e,2.1} \) and \(r_{e,3.7} \). Similar findings are reported by Zinner et al. [2010] and Painemal and Zuidema [2011].

We emphasize, however, that the above results are based on a particular LES case, which is not representative of all MODIS observations. For example, a significant fraction of MODIS pixels in Figure 2 have relatively small \(H_s \approx 0.1 \) and large \(\Delta r_{e,3.7-2.1} \approx -5 \) \(\mu \text{m} \). However, none of our LES cases yields any retrieval in this region. The impact of drizzle for the pixels in this region therefore remains unclear and needs to be elucidated in future research.

5.2. Influences of Cloud Horizontal Inhomogeneity

We now turn our attention to the plane-parallel \(r_e \) bias and 3-D radiative transfer effects. Using the ATEX-clean case we will show that both of these effects exist, and will demonstrate their influence on the \(r_e \) retrieval. We will then analyze their relative role in causing the \(\Delta r_{e,3.7-2.1} \).

The idealized cases in section 2.1 illustrated how cloud horizontal inhomogeneity can result in a plane-parallel \(r_e \) bias and significant difference between \(r_{e,2.1} \) and \(r_{e,3.7} \). This bias is examined here in a more realistic setting using a pixel from the ATEX clean case. Figure 10 shows the cloud extinction coefficient and cloud reflectance along the cross section at SZA of 20° and viewing zenith angle of 0°. The vertical lines indicate the location of the MODIS resolution pixel analyzed in Figure 11. The 1-D and 3-D simulations of cloud reflectance are in general agreement (i.e., net horizontal transport is small) in all but a few regions in Figure 10b in which \(R(0.86 \mu \text{m}) \) based on 3-D simulation is substantially smaller than that based on 1-D simulation. The selected MODIS resolution pixel (i.e., 800 \(\mu \text{m} \)) consists of 64 LES resolution sub-pixels (i.e., 100 \(\mu \text{m} \)), the reflectances of which are mapped (blue asterisks) onto the retrieval LUTs in Figure 11. The values are clustered around the \(r_e = 19 \) \(\mu \text{m} \) contour line of the LUT. The red diamonds in the figure indicate the locations of the MODIS resolution cloud reflectances, which are simply the linear averages of the blue asterisks. As in the idealized case shown in Figure 1, the MODIS resolution cloud reflectances fall below the envelope of the sub-pixel values in both 1-D (Figures 11a and 11b) and 3-D (Figures 11c and 11d) simulations. As a result, retrievals of \(r_{e,2.1} \) at MODIS resolution are around 25 \(\mu \text{m} \), substantially
Figure 11 is a typical case and the \(r_e \) heterogeneity factor is an important factor in causing the \(\Delta r_{e,3.7} > 2.1 \). It is worth mentioning that we have also investigated the sub-pixel variability of \(\tau \) and \(r_e \) in real MODIS observation. We developed a research level algorithm to retrieve \(\tau \) or \(r_e \) at 500 m using 500 m radiance observations from the MODIS 0.86 \(\mu \)m and 2.1 \(\mu \)m bands. This algorithm is applied to a MODIS-Terra granule shown in Figure 12a. The sub-pixel variabilities of \(\tau \) or \(r_e \) derived from the 500 m MODIS retrievals (red lines) for this granule are shown in Figure 12b. The good agreement between MODIS observation and LES results confirms that \(\tau \) tends to vary more strongly than \(r_e \) within a 1 km MODIS pixel.

[44] We now turn to the 3-D radiative transfer effects. First, the impacts of 3-D radiative transfer effects on \(r_{e,2.1} \) and \(r_{e,3.7} \) are investigated in Figure 13. In the figure we use the difference between the \(\tau \) retrieval based on 3-D radiative transfer simulation (referred to as “3-D \(\tau \)” and that based on 1-D radiative transfer simulation (referred to as “1-D \(\tau \)” as an index of the 3-D radiative transfer effects. By definition, 3-D \(\tau > 1 \) implies \(r_e \) for the illuminating effect, and 3-D \(\tau < 1 \) implies \(r_e \) for shadowing. As expected, the \(r_e \) retrievals based on 3-D radiative transfer simulation (“3-D \(r_e \)” are generally smaller than those based on 1-D radiative transfer simulation (“1-D \(r_e \)” for the illuminating effect (i.e., 3-D \(r_e - 1 \) D \(r_e < 0 \)), and vice versa for shadowing (i.e., 3-D \(r_e - 1 \) D \(r_e > 0 \)). What is interesting in Figure 13 is that the impact of 3-D radiative effects on \(r_{e,2.1} \) is generally greater than for \(r_{e,3.7} \). This is likely attributable to the stronger absorption in the 3.7 \(\mu \)m band that acts to reduce the horizontal transport of photons. The impact of 3-D radiative transfer effects on \(\Delta r_{e,2.1} \) is investigated in Figure 14 as a function of SZA and retrieval resolution. At SZA = 50°, illuminating and shadowing effects are clearly seen in both LES (Figure 14a) and MODIS (Figure 14b) resolution retrievals. Interestingly, based on the 3-D radiative transfer simulations, \(\Delta r_{e,2.1} > 0 \) over the illuminated side, and \(\Delta r_{e,3.7} \) < 0 over the shadowing side. These are consistent with the result in Figure 13 that illuminating and shadowing effects have stronger impacts on \(r_{e,2.1} \) than on \(r_{e,3.7} \). For example, over the illuminating side the apparent brightening decreases the \(r_e \) retrieval, and this impact is stronger for \(r_{e,2.1} \) than \(r_{e,3.7} \), leading to positive \(\Delta r_{e,2.1} \). This also explains the origin of the positive \(\Delta r_{e,2.7-1.1} \) points in Figures 7 and 8. At SZA = 20°, a significant portion of 3-D \(\tau \) retrievals are smaller than their 1-D counterparts. This is likely attributable to horizontal photon transport. Unlike illuminating and shadowing effects, which are a result of geometrical cloud top height variation, the horizontal photon transport effect is a result of horizontal \(\tau \) variation. The absorption in the 2.1 \(\mu \)m and 3.7 \(\mu \)m bands reduces horizontal photon transport, which explains why the absolute values of \(\Delta r_{e,2.7-1.1} \) in Figure 14c are generally smaller than those of the low sun case in Figure 14a.

[45] Another interesting point to note in Figure 14 is that, at LES resolution (i.e., Figures 14a and 14c), \(\Delta r_{e,3.7-2.1} \) shows no obvious positive or negative bias. However, at MODIS resolution, \(\Delta r_{e,3.7-2.1} \) seems biased more toward negative values, which is consistent with the results in Figures 5 and 6. This shift of \(\Delta r_{e,3.7-2.1} \) is more clearly seen in Figure 15, which shows \(\Delta r_{e,3.7-2.1} \) averaged over all cloudy pixels with \(\tau > 5 \) in the domain for different solar and
zenith angles, as well as different retrieval resolutions. In both low sun (SZA = 50°) and high sun (SZA = 20°) simulations, and for all viewing zenith angles, the domain-averaged MODIS resolution $D_{r,3.7}/C_{0,2.1}$ (red lines) based on 3-D radiative transfer simulations is systematically smaller than its LES resolution counterpart (black lines). This indicates that the shift of $D_{r,3.7}/C_{0,2.1}$ from close-to-zero values to more negative values when reflectance is averaged from high resolution to MODIS resolution is a robust result, only weakly affected by solar and viewing zenith angles.

The results in Figures 14 and 15 seem to suggest that although the 3-D radiative transfer effect has a strong impact on r_e retrievals, it tends to result in random errors rather than systematic bias. Therefore it is reasonable to hypothesize that the systematic shift of $D_{r,3.7}/C_{0,2.1}$ seen in Figures 6 and 15 is mainly attributable to the plane-parallel r_e bias. This hypothesis is further investigated in Figures 16 and 17.

Figure 11. Cloud reflectances of the selected pixel in Figure 10 plotted in the Nakajima-King LUT. The blue asterisks indicate the reflectance simulated at the LES resolution and the red diamond indicates the MODIS resolution radiance calculated as the arithmetic average of the blue dots. The solar and viewing zenith angles for this plot are 20° and 0°, respectively, in this figure.
the \(\tau \) retrieval, the plane-parallel bias is evident: values retrieved from the averaged radiances (i.e., MODIS resolution retrieval) are significantly smaller than the sub-pixel mean values. However, in the case of \(r_{e,2.1} \) retrievals, the reverse is true: MODIS resolution retrievals tend to be larger than the sub-pixel mean values. This difference indicates that in comparison with other factors, such drizzle and 3-D radiative transfer, the plane-parallel \(r_e \) bias is the dominant source of errors in the \(r_{e,2.1} \) retrievals at MODIS resolution. The relationship between the plane-parallel \(r_e \) bias and \(\Delta r_{e,3.7-2.1} \) is shown more clearly in Figure 17. In both 1-D and 3-D simulation, the magnitude of \(\Delta r_{e,3.7-2.1} \) is, in general, positively correlated with the strength of the plane-parallel \(r_e \) bias because the plane-parallel \(r_e \) bias has a stronger impact on the \(r_{e,2.1} \) than on \(r_{e,3.7} \). As this bias increases, \(r_{e,2.1} \) deviates from the sub-pixel mean, while \(r_{e,3.7} \) remains relatively close to the sub-pixel mean, thereby resulting in negative and increasing \(\Delta r_{e,3.7-2.1} \). Together Figures 16 and 17 support the hypothesis that the plane-parallel \(r_e \) bias is the primary reason for the systematic bias in the \(r_{e,2.1} \) retrievals, leading to significant \(\Delta r_{e,3.7-2.1} \) values. It should be mentioned here that Marshak et al. [2006] found that \(r_{e,2.1} \) retrievals tend to decrease with increasing horizontal scale, which is opposite to what we found here. The difference between these two studies might be attributable to the use of different LES fields, different levels of complexity in cloud microphysics (a constant \(r_c = 10 \mu m \) for the whole cloud field was used by Marshak et al. [2006], while more realistic \(r_c \) fields from a bin microphysics scheme are used in this study), or different configurations in radiative transfer simulations.

[47] To summarize the lessons learned from the above case studies, we use the following equation to qualitatively describe the impact of various factors on MODIS \(r_e \) retrieval:

\[
r_{e,\lambda} = r_{e,\lambda}^* + \Delta r_{e,\lambda}^{3D} + \Delta r_{e,\lambda}^{PP},
\]

where the subscript \(\lambda \) indicates the spectral band (i.e., 2.1 \(\mu m \) or 3.7 \(\mu m \)) used in the retrieval. In this equation, we use the \(r_{e,\lambda}^* \) term to denote the “ground truth,” the \(\Delta r_{e,\lambda}^{3D} \) term to represent the impact of the 3-D radiative effects (i.e., illuminating or shadowing effects) on \(r_e \) retrieval and the \(\Delta r_{e,\lambda}^{PP} \) term for the plane-parallel \(r_e \) bias. First, it is important to note that even the “ground truth” \(r_{e,\lambda}^* \) is dependent on the spectral band owing to, for instance, the spectral difference in vertical weighting. Second, our case studies demonstrate that the \(\Delta r_{e,\lambda}^{3D} \) and \(\Delta r_{e,\lambda}^{PP} \) terms and their relative impact on \(r_{e,\lambda} \) depend on both spectral band and spatial resolution. At high resolution (i.e., LES resolution), the \(\Delta r_{e,\lambda}^{3D} \) term is small and \(\Delta r_{e,\lambda}^{PP} \) term dominates, leading to substantial difference between 1-D and 3-D retrievals (see Figure 13). Note that the sign of \(\Delta r_{e,\lambda}^{PP} \) term could be either positive or negative, depending on the nature of the 3-D effect (i.e., illuminating or shadowing). From a spectral perspective, because the 3-D effects tend to impact \(r_{e,2.1} \) more than \(r_{e,3.7} \), the absolute value of \(\Delta r_{e,2.1}^{3D} \) tends to be greater than \(\Delta r_{e,3.7}^{3D} \) (see Figure 14). At high resolution the sign of \(\Delta r_{e,\lambda}^{3D} \) term could be both positive or negative (see Figure 5). When cloud reflectance is aggregated to MODIS resolution, the cancellation of opposing 3-D effects reduces the absolute value of the \(\Delta r_{e,\lambda}^{3D} \) term. At the same time, the \(\Delta r_{e,\lambda}^{PP} \) term from the plane-parallel \(r_e \) bias becomes significant, especially for heterogeneous pixels. Note that because the sub-pixel scale variability of \(r_c \) is significantly smaller than that of \(\tau \) (see Figure 12), the sign of the \(\Delta r_{e,\lambda}^{PP} \) term tends to be positive.

Figure 12. A comparison of sub-pixel variability of \(\tau \) and \(r_e \) between results from MODIS 500 m retrievals and those based on LES. (a) The RGB image of a Terra-MODIS granule (collected at 20:55 UTC on April 2nd, 2005) selected for comparison. A research level algorithm is developed to retrieve \(\tau \) and \(r_e \) from 500 m resolution radiance from MODIS band 2 (0.86 \(\mu m \)) and band 6 (2.1 \(\mu m \)) for this selected granule. Sub-pixel variability of \(\tau \) and \(r_e \) are derived for 1 km resolution operational MODIS pixels (i.e., each 1 km pixel contains four 500 m sub-pixels). (b) The MODIS 500 m retrieval results (red) in comparison with those from the ATEX clean case (black).
(see Figure 1). From a spectral perspective, because the 3.7 \(\mu \text{m} \) look-up-table is more orthogonal than 2.1 \(\mu \text{m} \) look-up-table, \(\Delta r_{e,2.1}^{PP} \) tends to be larger than \(\Delta r_{e,3.7}^{PP} \) (see Figures 1 and 11). As a result, at MODIS resolution the \(\Delta r_{e,3.7-2.1} \) is biased toward negative values (see Figures 6 and 15) and generally decreases with increasing sub-pixel heterogeneity (see Figure 7), although for individual pixels \(\Delta r_{e,3.7-2.1} \) could be either positive or negative depending on the \(\Delta r_{e,3.7}^{3D} \) term. Finally, it should be noted that the \(\Delta r_{e,3.7}^{3D} \) and \(\Delta r_{e,3.7}^{PP} \) terms arise only when a cloud field has significant horizontal heterogeneity. Therefore, these terms cannot explain why some very homogenous pixels in MODIS operational retrievals (i.e., upper-left part of Figure 2) have large negative values of \(\Delta r_{e,3.7-2.1} \) (about \(-5 \mu \text{m}\)). An explanation for such pixels is left for future studies.

6. Conclusions and Future Work

[48] In this study, we develop a MODIS cloud property retrieval simulator based on the combination of a large-eddy simulation model and radiative transfer models. Using this simulator, MODIS retrievals of shortwave optical depth (\(\tau \)) and droplet effective radii using 2.1 or 3.7 \(\mu \text{m} \) radiances (\(r_{e,2.1} \) and \(r_{e,3.7} \)) are simulated at different resolutions based on both 1-D and 3-D radiative transfer for several LES cases. The effects of drizzle and cloud horizontal inhomogeneity

![Figure 13](image_url)
on the \(r_e \) retrievals in these cases are investigated. It is found that at high resolution (~100 m) 3-D radiative transfer effects, such as enhanced illumination and shadowing, affect \(r_{e,2.1} \) stronger than \(r_{e,3.7} \) probably attributable to weaker absorption at 2.1 \(\mu \text{m} \). As a result, the illumination effect tends to result in positive \(\Delta r_{e,3.7-2.1} (= r_{e,3.7} - r_{e,2.1}) \) and the shadowing effect tends to result in negative \(\Delta r_{e,3.7-2.1} \). However, because of a balance between these two opposing effects, \(r_{e,2.1} \) and \(r_{e,3.7} \) agree reasonably well at high resolution, with no systematic bias between the two. At MODIS-like resolution (~800 m), \(r_{e,2.1} \) is found to become systematically larger than \(r_{e,3.7} \) and the difference is seen to increase with \(r_{e,2.1} \) and the sub-pixel inhomogeneity index \(H_n \), consistent with the trends found in operational MODIS observations. This difference is unlikely a direct radiative result of drizzle here because the removal of drizzle in the radiative computations has little impact on the retrievals, including \(\Delta r_{e,3.7-2.1} \). It is also found that opposing 3-D radiative effects tend to cancel each other out at MODIS-like resolution, resulting in a weaker net impact of 3-D effects on \(r_e \) retrievals. Finally, it is found within pixels of MODIS-like resolution that cloud \(\tau \) generally varies more strongly than

Figure 14. The difference between 3-D and 1-D \(\tau \) retrieval versus 3-D \(\Delta r_{e,3.7-2.1} \) for (a) SZA = 50° at LES resolution, (b) SZA = 50° at MODIS resolution, (c) SZA = 20° at LES resolution, and (d) SZA = 20° at MODIS resolution, based on the retrievals at nadir viewing direction from the ATEX clean case.
The strong sub-pixel variability in \(r_e \) gives rise to an plane-parallel bias that results from averaging over non-orthogonal \(r_e \) and \(\tau \) retrieval curves in the 2-channel (visible and SWIR) radiance phase space, and this heterogeneity bias is largely responsible for the systematic difference between \(r_{e,3.7} \) and \(r_{e,2.1} \) at MODIS-like resolution.

Our results have several implications. First, it is evident from our analysis, as well as previous studies [Boeke, 2009; Hayes et al., 2010; Seethala and Horváth, 2010; Zhang and Platnick, 2011], that the cloud horizontal inhomogeneity effect can cause substantial errors in MODIS \(r_{e,2.1} \) retrievals. The MODIS \(r_e \) retrieval based on the 1.6 \(\mu \)m band (\(r_{e,1.6} \)) is not considered in this study but, given that water absorption is even weaker in this band, we expect that the \(r_{e,1.6} \) retrieval faces the same problem. Further investigations are needed to understand the temporal and geographical distributions of this error in the MODIS cloud product, and its implications for climate and aerosol indirect effect studies. Second, it is shown that the inhomogeneity index \(H_s \) can be used to assess the magnitude of such errors, and therefore the quality of MODIS operational \(r_{e,2.1} \) retrievals. In fact, in the upcoming MODIS Collection 6 (C6) cloud product, it has been planned for the index \(H_s \) to be reported as part of the cloud mask product (MOD35). Finally, the large negative \(\Delta r_{e,3.7-2.1} \) values associated with large \(H_s \) index (i.e., points in the upper right corner of Figure 2) are likely the result of the cloud inhomogeneity effect. This finding warrants caution for the use of these retrievals in cloud vertical structure or drizzle detection algorithms based on \(\Delta r_{e,3.7-2.1} \) [Chang and Li, 2002, 2003; Kokhanovsky and Rozanov, 2011].

Several questions also arise from this study that are worthy of further investigation. For instance, is it possible to reduce the impact of cloud inhomogeneity on the \(r_{e,2.1} \) retrieval? Note that the MODIS 2.1 \(\mu \)m band has the native resolution of 500 m. For the limited cases in this study, \(r_{e,3.7} \) and \(r_{e,2.1} \) agree better at higher resolution. Therefore, it is worth exploring whether the magnitude of \(\Delta r_{e,3.7-2.1} \) is substantially reduced if retrievals are made at 500 m resolution. Such investigations would also provide useful information for other satellite instruments, for instance the VIIRS (Visible/Infrared Imager Radiometer Suite) on the Suomi NPP (National Polar-orbiting Partnership) mission, which has a resolution of about 375 m. Another intriguing question is whether \(\Delta r_{e,3.7-2.1} \) values contain any useful information for cloud vertical structure retrieval or drizzle detection. Note that a significant portion of the large negative \(\Delta r_{e,3.7-2.1} \) values are found to be associated with small \(H_s \) index values in the MODIS observations (i.e., the pixels in the upper left of Figure 2). Such situations are not represented in our simulation cases. It seems that the cloud inhomogeneity effect is small for such pixels. It remains unclear and warrants further investigation whether these large negative \(\Delta r_{e,3.7-2.1} \) values associated with small \(H_s \) reflect the cloud vertical structure [Chang and Li, 2002, 2003; Kokhanovsky and Rozanov, 2011] or other factors. Finally, future work is also needed to study the impact of cloud horizontal inhomogeneity on ice cloud microphysics retrievals and on other remote sensing techniques, for example the infrared split window method [Inoue, 1985; Prabhakara et al., 1988].

Figure 15. MODIS-resolution \(\Delta r_{e,3.7-2.1} \) averaged over all cloudy pixels with \(\tau > 5 \) based on 3-D radiative transfer simulation for the ATEX clean case at different solar and viewing angles and different retrieval resolutions.

Figure 16. Comparisons between mean retrieval values at LES resolution (i.e., 100 m) with MODIS-like resolution retrievals (i.e., 800 m) based on averaged radiance for (a) \(\tau \) and (b) \(r_{e,2.1} \) using the 1-D radiative transfer simulation. (c, d) Same as Figure 16a and Figure 16b, respectively, but are based on 3-D radiative transfer simulations.
Acknowledgments. We thank Daniel Grosvenor and the other two anonymous reviewers for their insightful comments, questions, and suggestions, which have helped to improve this manuscript. ZZ, AA and SP were supported by NASA under grant NNX11AI98G, and RP was supported by NASA under grant NNX11AF09G. Computational support was provided by the NASA Advanced Supercomputing Division.

References

Figure 17. The x axis corresponds to the difference between the sub-pixel means of $r_{e,2.1}$ and the $r_{e,2.1}$ retrievals at MODIS resolution. The y axis corresponds to the difference $\Delta r_{e,3.7–2.1}$ at the MODIS resolution. The figure shows that $r_{e,2.1}$ heterogeneity bias is correlated with $\Delta r_{e,3.7–2.1}$.

Zheng et al.: Heterogeneity and drizzle effect on effective radius retrieval

[51] Acknowledgments. We thank Daniel Grosvenor and the other two anonymous reviewers for their insightful comments, questions, and suggestions, which have helped to improve this manuscript. ZZ, AA and SP were supported by NASA under grant NNX11AI98G, and RP was supported by NASA under grant NNX11AF09G. Computational support was provided by the NASA Advanced Supercomputing Division.

References